Tip-enhanced infrared nanospectroscopy via molecular expansion force detection

Article metrics


Mid-infrared absorption spectroscopy in the molecular fingerprint region is widely used for chemical identification and quantitative analysis employing infrared absorption spectra databases. The ability to perform mid-infrared spectroscopy with nanometre spatial resolution is highly desirable for applications in materials and life sciences. At present, scattering near-field scanning optical microscopy1,2,3,4,5,6 is considered to be the most sensitive technique for nanoscale mid-infrared spectroscopy under ambient conditions. Here, we demonstrate that nanoscale mid-infrared spectra can be obtained with comparable or higher sensitivity by detecting mechanical forces exerted by molecules on the atomic force microscope tip on light excitation. The mechanical approach to mid-infrared nanospectroscopy results in a simple optical set-up that, unlike scattering near-field scanning optical microscopy, requires no cryogenically cooled mid-infrared detectors, is easy to align, and is not affected by sample scattering.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Description of experiment.
Figure 2: Photoexpansion spectra of self-assembled monolayers on gold.
Figure 3: Demonstration of spatial resolution.
Figure 4: Sample heating and expansion.


  1. 1

    Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

  2. 2

    Xu, X. G., Rang, M., Craig, I. M. & Raschke, M. B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J. Phys. Chem. Lett. 3, 1836–1841 (2012).

  3. 3

    Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nature Mater. 10, 352–356 (2011).

  4. 4

    Knoll B. & Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

  5. 5

    Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

  6. 6

    Brehm, M., Taubner, T., Hillenbrand, R. & Keilmann, F. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. Nano Lett. 6, 1307–1310 (2006).

  7. 7

    Puttkamer, K. V., Dubal, H.-R. & Quack, M. Time-dependent processes in polyatomic molecules during and after intense infrared irradiation. J. Chem. Soc. Faraday Discuss. 75, 197–210 (1983).

  8. 8

    Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005).

  9. 9

    Dazzi, A., Glotin, F. & Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 107, 124519 (2010).

  10. 10

    Dazzi, A. et al. AFM–IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 66, 1365–1384 (2012).

  11. 11

    Policar, C. et al. Subcellular IR imaging of a metal–carbonyl moiety using photothermally induced resonance. Angew. Chem. Int. Ed. 50, 860–864 (2011).

  12. 12

    Lahiri, B., Holland, G., Aksyuk, V. & Centrone, A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Lett. 13, 3218–3224 (2013).

  13. 13

    Felts, J. R. et al. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Rev. Sci. Instrum. 84, 023709 (2013).

  14. 14

    Lahiri, B., Holland, G. & Centrone, A. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small 9, 439–445 (2013).

  15. 15

    Troccoli, M. et al. High-performance quantum cascade lasers grown by metal–organic vapor phase epitaxy and their applications to trace gas sensing. J. Lightwave Technol. 26, 3534–3555 (2008).

  16. 16

    Lu, F. & Belkin, M. A. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Opt. Express 19, 19942–19947 (2011).

  17. 17

    Hida, H. et al. Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sens. Actuat. A 148, 311–318 (2008).

  18. 18

    Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

  19. 19

    Hegner, M., Wagner, P. & Semenza, G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf. Sci. 291, 39–46 (1993).

  20. 20

    Harder, P., Grunze, M., Dahint, R., Whitlesides, G. M. & Laibinis, P. E. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 102, 426–436 (1998).

  21. 21

    Merklin, G. T., He, L.-T. & Griffiths, P. R. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide. Appl. Spectrosc. 53, 1448–1453 (1999).

  22. 22

    Steidtner, J. & Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008).

  23. 23

    Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

  24. 24

    Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

  25. 25

    Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).

  26. 26

    Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 2003).

  27. 27

    Luan, B. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).

  28. 28

    DelRio, F. W., Jaye, C., Fischer, D. A. & Cook, R. F. Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. App. Phys. Lett. 94, 131909 (2009).

  29. 29

    Kohlgraf-Owens, D. C., Sukhov, S. & Dogariu, A. Mapping the mechanical action of light. Phys. Rev. A 84, 011807(R) (2011).

  30. 30

    Brandstetter, M. & Lendl, B. Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids. Sens. Actuat. B 170, 189–195 (2012).

Download references


The authors acknowledge financial support from the Robert A. Welch Foundation (grant no. F-1705) and the US Department of Energy STTR program. Sample fabrication was carried out in the Microelectronics Research Center at the University of Texas at Austin, which is a member of the National Nanotechnology Infrastructure Network (NNIN). The authors thank C. Prater, V. Yakovlev and F. Lagugné-Labarthet for discussions.

Author information

M.A.B. conceived and designed the experiments. F.L. built the experimental set-up. F.L. and M.J. performed the experiments. All authors analysed the data and wrote the paper.

Correspondence to Mikhail A. Belkin.

Ethics declarations

Competing interests

M.A.B. and F.L. are co-authors of US patent application no. 13/307,464, ‘High frequency deflection measurement of IR absorption’. M.J. declares no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1534 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, F., Jin, M. & Belkin, M. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photon 8, 307–312 (2014) doi:10.1038/nphoton.2013.373

Download citation

Further reading