Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anderson localization of entangled photons in an integrated quantum walk

Abstract

First predicted for quantum particles in the presence of a disordered potential, Anderson localization is a ubiquitous effect, observed also in classical systems, arising from the destructive interference of waves propagating in static disordered media. Here we report the observation of this phenomenon for pairs of polarization-entangled photons in a discrete quantum walk affected by position-dependent disorder. By exploiting polarization entanglement of photons to simulate different quantum statistics, we experimentally investigate the interplay between the Anderson localization mechanism and the bosonic/fermionic symmetry of the wavefunction. The disordered lattice is realized by an integrated array of interferometers fabricated in glass by femtosecond laser writing. A novel technique is used to introduce a controlled phase shift into each unit mesh of the network. This approach yields great potential for quantum simulation and for implementing a computational power beyond the one of a classical computer in the ‘hard-to-simulate’ scenario.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept scheme of cascaded beamsplitters to implement photonic QWs.
Figure 2: Integrated circuit for disordered QW.
Figure 3: Measured output probabilities for QWs with order and static disorder.
Figure 4: Localization properties of two-photon wave packets.
Figure 5: Relative distance of two-photon walkers.
Figure 6: Measured output probabilities for QWs with dynamic disorder.

Similar content being viewed by others

References

  1. Anderson, P. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. Abrahams, E. 50 years of Anderson Localization (World Scientific, 2010).

    Book  Google Scholar 

  3. Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article  ADS  Google Scholar 

  4. Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  5. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

  6. Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Phys. 4, 794–798 (2008).

    Article  ADS  Google Scholar 

  7. Pertsch, T. et al. Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93, 053901 (2004).

    Article  ADS  Google Scholar 

  8. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  Google Scholar 

  9. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  ADS  Google Scholar 

  10. Broome, M. A. et al. Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010).

    Article  ADS  Google Scholar 

  11. Schreiber, A. et al. Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011).

    Article  ADS  Google Scholar 

  12. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).

    Article  ADS  Google Scholar 

  13. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 945–948 (2008).

    ADS  Google Scholar 

  14. Omar, Y., Paunković, N. & Bose, L. S. S. Quantum walk on a line with two entangled particles. Phys. Rev. A 74, 042304 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  15. Beenakker, C., Venderbos, J. & van Exter, M. Two-photon speckle as a probe of multi-dimensional entanglement. Phys. Rev. Lett. 102, 193601 (2009).

    Article  ADS  Google Scholar 

  16. Lahini, Y., Bromberg, Y., Christodoulides, D. N. & Silberberg, Y. Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010).

    Article  ADS  Google Scholar 

  17. Bromberg, Y., Lahini, Y., Morandotti, R. & Silberberg, Y. Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904 (2009).

    Article  ADS  Google Scholar 

  18. Shepelyansky, D. Coherent propagation of two interacting particles in a random potential. Phys. Rev. Lett. 73, 2607–2610 (1994).

    Article  ADS  Google Scholar 

  19. Sansoni, L. et al. Two-particle bosonic–fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012).

    Article  ADS  Google Scholar 

  20. Kempe, J. Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003).

    Article  ADS  Google Scholar 

  21. Potocek, V., Gabris, A., Kiss, T. & Jex, I. Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 012325 (2009).

    Article  ADS  Google Scholar 

  22. Childs, A. M. Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  23. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).

    Article  ADS  Google Scholar 

  24. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

    Article  ADS  Google Scholar 

  25. Karski, M. et al. Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009).

    Article  ADS  Google Scholar 

  26. Schmitz, H. et al. Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009).

    Article  ADS  Google Scholar 

  27. Zahringer, F. et al. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010).

    Article  ADS  Google Scholar 

  28. Ryan, C. A., Laforest, M., Boileau, J. C. & Laflamme, R. Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72, 062317 (2005).

    Article  ADS  Google Scholar 

  29. Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).

    Article  ADS  Google Scholar 

  30. Kitagawa, T. et al. Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3, 882 (2012).

    Article  ADS  Google Scholar 

  31. Schreiber, A. et al. A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012).

    Article  ADS  Google Scholar 

  32. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    Article  ADS  Google Scholar 

  33. Owens, J. O. et al. Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011).

    Article  ADS  Google Scholar 

  34. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  35. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  36. Laing, A. et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211108 (2010).

    Article  ADS  Google Scholar 

  37. Sansoni, L. et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010).

    Article  ADS  Google Scholar 

  38. Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nature Commun. 2, 566 (2011).

    Article  ADS  Google Scholar 

  39. Politi, A., Matthews, J. C. F. & O'Brien, J. L. Shor's quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  40. Matthews, J. C. F. et al. Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions. Preprint at http://lanl.arxiv.org/abs/1106.1166 (2011).

  41. Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).

    Article  ADS  Google Scholar 

  42. Matthews, J. C. F., Politi, A., Stefanov, A. & O'Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

    Article  ADS  Google Scholar 

  43. Crespi, A. et al. Measuring protein concentration with entangled photons. Appl. Phys. Lett. 100, 233704 (2012).

    Article  ADS  Google Scholar 

  44. Osellame, R., Cerullo, G. & Ramponi, R. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics Vol. 123 (Springer, 2012).

    Book  Google Scholar 

  45. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photon. 2, 219–225 (2008).

    Article  ADS  Google Scholar 

  46. Della Valle, G., Osellame, R. & Laporta, P. Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A 11, 049801 (2009).

    Article  ADS  Google Scholar 

  47. Molinari, D. & Fratalocchi, A. Route to strong localization of light: the role of disorder. Opt. Express 20, 18156–18164 (2012).

    Article  ADS  Google Scholar 

  48. Terraneo, M. & Shepelyansky, D. L. Dynamical localization and repeated measurements in a quantum computation process. Phys. Rev. Lett. 92, 037902 (2004).

    Article  ADS  Google Scholar 

  49. Yin, Y., Katsanos, D. E. & Evangelou, S. N. Quantum walks on a random environment. Phys. Rev. A 77, 022302 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  50. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Preprint at http://lanl.arxiv.org/abs/1011.3245 (2010).

Download references

Acknowledgements

This project was supported by FIRB (Fondo per gli investimenti della ricerca di base) – Futuro in Ricerca HYTEQ (Hybrid Technologies for Quantum Information Processing), PRIN 2009 (Progetti di Ricerca di Interesse Nazionale 2009), IP-SOLID (Integrated Project ‘Solid State Systems for Quantum Information Processing’, grant agreement no. FP7 248629) and ERC (European Research Council)—Starting Grant 3D-QUEST (3D-Quantum Integrated Optical Simulation; grant agreement no. 307783).

Author information

Authors and Affiliations

Authors

Contributions

L.S., F.D.N., F.S., P.M., A.C., R.O. and R.R. conceived the experimental approach for simulation of the Anderson localization. A.C., R.O. and R.R. fabricated the integrated devices and performed the characterization with classical light. L.S., F.D.N., F.S. and P.M. carried out the quantum experiments. V.G. and R.F. contributed to the theoretical analysis on how statistics influences localization. All authors discussed the experimental implementation and results and contributed to writing the paper.

Corresponding authors

Correspondence to Roberto Osellame or Fabio Sciarrino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 968 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespi, A., Osellame, R., Ramponi, R. et al. Anderson localization of entangled photons in an integrated quantum walk. Nature Photon 7, 322–328 (2013). https://doi.org/10.1038/nphoton.2013.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing