Abstract

Quantum metrology utilizes entanglement to improve the sensitivity of measurements1,2,3. To date, the focus has been on the measurement of a single observable. Its orthogonal observable, however, may contain additional information, the knowledge of which can be used to further improve the measurement result beyond what is possible with state-of-the-art quantum metrology. Here we demonstrate a laser interferometer that provides information about two non-commuting observables, with uncertainties below the meter's quantum ground state. Our experiment is a proof of principle of what we call ‘quantum-dense metrology’, referring to its increased measurement information and its analogy to quantum-dense coding in quantum information science. We propose to use the additional information to discriminate between the actual science signal and parasitic signals originating from scattered photons. Our approach can be readily applied to improve squeezed-light enhanced gravitational-wave detectors at non-quantum noise-limited detection frequencies by providing a sub-shot-noise veto trigger against stray-light-induced signals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

  2. 2.

    , & Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

  3. 3.

    , , & Quantum metrology for gravitational wave astronomy. Nat. Commun. 1, 121 (2010).

  4. 4.

    , , , & Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 22002 (2001).

  5. 5.

    et al. Two-photon interference in a Mach–Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990).

  6. 6.

    , & Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

  7. 7.

    , & High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

  8. 8.

    et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

  9. 9.

    , , , & Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

  10. 10.

    et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).

  11. 11.

    et al. Entanglement assisted metrology. Phys. Rev. Lett. 94, 020502 (2005).

  12. 12.

    et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

  13. 13.

    et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

  14. 14.

    , & Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

  15. 15.

    , & Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87, 270404 (2001).

  16. 16.

    & Evading quantum mechanics: engineering a classical subsystem within a quantum environment. Phys. Rev. X 2, 031016 (2012).

  17. 17.

    , , & Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

  18. 18.

    et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

  19. 19.

    et al. Generation of continuous variable Einstein–Podolsky–Rosen entanglement via the Kerr nonlinearity in an optical fiber. Phys. Rev. Lett. 86, 4267–4270 (2001).

  20. 20.

    , & Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003).

  21. 21.

    & Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).

  22. 22.

    & Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000).

  23. 23.

    & Briefs: On the simultaneous measurement of a pair of conjugate observables. Bell Syst. Tech. J. 44, 725–729 (1965).

  24. 24.

    Measuring the Quantum State of Light Ch. 6 (Cambridge Univ. Press, 1997).

  25. 25.

    , , & Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys. 9, 371 (2007).

  26. 26.

    et al. LIGO: the laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992).

  27. 27.

    , & Scattered light noise in gravitational wave interferometric detectors: coherent effects. Phys. Rev. D 54, 1276–1286 (1996).

  28. 28.

    , & Impact of upconverted scattered light on advanced interferometric gravitational wave detectors. Opt. Express 20, 8329–8336 (2012).

  29. 29.

    & Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativity 12, 2 (2009).

  30. 30.

    , , & Strong Einstein–Podolsky–Rosen steering with unconditional entangled states. Phys. Rev. A 87, 022104 (2013).

Download references

Acknowledgements

The authors acknowledge discussions with T. Eberle, V. Händchen and H. Lück. This research was financed by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich Transregio 7, project C8), the European Union Seventh Framework Programme for Research (FP7), project ‘Quantum Interfaces, Sensors and Communication based on Entanglement’ (Q-ESSENCE), and supported by the Centre for Quantum Engineering and Space–Time Research (QUEST) and the International Max Planck Research School (IMPRS) on Gravitational Wave Astronomy.

Author information

Affiliations

  1. Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Callinstrasse 38, 30167 Hannover, Germany

    • Sebastian Steinlechner
    • , Jöran Bauchrowitz
    • , Melanie Meinders
    • , Helge Müller-Ebhardt
    • , Karsten Danzmann
    •  & Roman Schnabel

Authors

  1. Search for Sebastian Steinlechner in:

  2. Search for Jöran Bauchrowitz in:

  3. Search for Melanie Meinders in:

  4. Search for Helge Müller-Ebhardt in:

  5. Search for Karsten Danzmann in:

  6. Search for Roman Schnabel in:

Contributions

R.S. developed the initial idea for this work. H.M-E. and S.S. contributed to the theoretical background. S.S., J.B. and R.S. conceived the experiment. S.S., J.B. and M.M. conducted the experiment under supervision from K.D. and R.S.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Roman Schnabel.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2013.150

Further reading

  • Concepts and research for future detectors

    • F. Acernese
    • , F. Barone
    • , A. S. Bell
    • , G. Bergmann
    • , D. Blair
    • , M. Born
    • , D. Brown
    • , X. Chen
    • , S. L. Danilishin
    • , J. Degallaix
    • , T. Denker
    • , A. Di Virgilio
    • , C. Frajuca
    • , D. Friedrich
    • , P. Fulda
    • , H. Grote
    • , S. H. Huttner
    • , J. Kato
    • , S. Köhlenbeck
    • , S. Leavey
    • , H. Lück
    • , M. Nakano
    • , R. N. Palmer
    • , M. Punturo
    • , P. Raffai
    • , D. Schütte
    • , D. Simakov
    • , B. J. J. Slagmolen
    • , K. Somiya
    • , J. Steinlechner
    • , S. Steinlechner
    • , S. Tarabrin
    • , A. R. Wade
    • , M. Wang
    • , T. Westphal
    • , C. Zhao
    • , R. X. Adhikari
    • , M. Adier
    • , K. Agatsuma
    • , B. W. Barr
    • , R. Bassiri
    • , J. Bauchrowitz
    • , C. Blair
    • , C. Bond
    • , K. Bongs
    • , F. S. Bortoli
    • , G. Cagnoli
    • , P. Calia
    • , R. Canonico
    • , L. Carbone
    • , S. S. Y. Chua
    • , E. Coccia
    • , J. Cripe
    • , L. Cunningham
    • , K. Danzmann
    • , R. De Rosa
    • , V. Fafone
    • , M. M. Fejer
    • , R. Flaminio
    • , J. P. Fontaine
    • , D. Forest
    • , A. Freise
    • , A. Furusawa
    • , F. S. Garufi
    • , G. Giordano
    • , L. Gondán
    • , N. Gordon
    • , S. Goßler
    • , C. Gräf
    • , M. Granata
    • , K. Hammerer
    • , I. S. Heng
    • , M. Heurs
    • , S. Hild
    • , S. Hirobayashi
    • , J. Hough
    • , L. Ju
    • , H. Kaufer
    • , H. Kawamura
    • , S. Kawamura
    • , N. Kelecsényi
    • , A. Khalaidovski
    • , F. Ya. Khalili
    • , K. Kuroda
    • , G. Loddo
    • , J. Logue
    • , Y. Ma
    • , J. Macarthur
    • , N. S. Magalhaes
    • , E. Majorana
    • , V. Malvezzi
    • , S. Márka
    • , Z. Márka
    • , I. Martin
    • , D. E. McClelland
    • , M. Meinders
    • , C. Michel
    • , J. Miller
    • , N. Morgado
    • , H. Müller-Ebhardt
    • , L. Naticchioni
    • , T. T.-H. Nguyen
    • , M. Perciballi
    • , L. Pinard
    • , P. Puppo
    • , P. Rapagnani
    • , F. Ricci
    • , P. Risson
    • , A. Rocchi
    • , E. Rocco
    • , R. Romano
    • , R. K. Route
    • , S. Rowan
    • , S. Sakata
    • , R. Schnabel
    • , D. A. Shaddock
    • , B. Sorazu
    • , M. S. Stefszky
    • , D. Steinmeyer
    • , K. A. Strain
    • , N. V. Voronchev
    • , R. L. Ward
    •  & M. H. Wimmer

    General Relativity and Gravitation (2014)