Quantum-dense metrology


Quantum metrology utilizes entanglement to improve the sensitivity of measurements1,2,3. To date, the focus has been on the measurement of a single observable. Its orthogonal observable, however, may contain additional information, the knowledge of which can be used to further improve the measurement result beyond what is possible with state-of-the-art quantum metrology. Here we demonstrate a laser interferometer that provides information about two non-commuting observables, with uncertainties below the meter's quantum ground state. Our experiment is a proof of principle of what we call ‘quantum-dense metrology’, referring to its increased measurement information and its analogy to quantum-dense coding in quantum information science. We propose to use the additional information to discriminate between the actual science signal and parasitic signals originating from scattered photons. Our approach can be readily applied to improve squeezed-light enhanced gravitational-wave detectors at non-quantum noise-limited detection frequencies by providing a sub-shot-noise veto trigger against stray-light-induced signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic showing the underlying principle of QDM.
Figure 2: Schematic set-up for the experimental demonstration of QDM.
Figure 3: Experimental demonstration of QDM.


  1. 1

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Article  Google Scholar 

  2. 2

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Schnabel, R., Mavalvala, N., McClelland, D. E. & Lam, P. K. Quantum metrology for gravitational wave astronomy. Nat. Commun. 1, 121 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S. & Vyatchanin, S. P. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 22002 (2001).

    Article  Google Scholar 

  5. 5

    Rarity, J. et al. Two-photon interference in a Mach–Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990).

    ADS  Article  Google Scholar 

  6. 6

    Mitchell, M., Lundeen, J. & Steinberg, A. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    ADS  Article  Google Scholar 

  7. 7

    Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Cappellaro, P. et al. Entanglement assisted metrology. Phys. Rev. Lett. 94, 020502 (2005).

    ADS  Article  Google Scholar 

  12. 12

    Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Abadie, J. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

    ADS  Article  Google Scholar 

  14. 14

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  Article  Google Scholar 

  15. 15

    D'Ariano, G. M., Lo Presti, P. & Paris, M. G. A. Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87, 270404 (2001).

    Article  Google Scholar 

  16. 16

    Tsang, M. & Caves, C. Evading quantum mechanics: engineering a classical subsystem within a quantum environment. Phys. Rev. X 2, 031016 (2012).

    Google Scholar 

  17. 17

    Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

    ADS  Article  Google Scholar 

  18. 18

    Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    ADS  Article  Google Scholar 

  19. 19

    Silberhorn, C. et al. Generation of continuous variable Einstein–Podolsky–Rosen entanglement via the Kerr nonlinearity in an optical fiber. Phys. Rev. Lett. 86, 4267–4270 (2001).

    ADS  Article  Google Scholar 

  20. 20

    Bowen, W. P., Schnabel, R. & Lam, P. K. Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003).

    ADS  Article  Google Scholar 

  21. 21

    Bennett, C. H. & Wiesner, S. J. Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22

    Braunstein, S. L. & Kimble, H. J. Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    Arthurs, E. & Kelly, J. L. B.S.T.J. Briefs: On the simultaneous measurement of a pair of conjugate observables. Bell Syst. Tech. J. 44, 725–729 (1965).

    Article  Google Scholar 

  24. 24

    Leonhardt, U. Measuring the Quantum State of Light Ch. 6 (Cambridge Univ. Press, 1997).

    Google Scholar 

  25. 25

    Vahlbruch, H., Chelkowski, S., Danzmann, K. & Schnabel, R. Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys. 9, 371 (2007).

    ADS  Article  Google Scholar 

  26. 26

    Abramovici, A. et al. LIGO: the laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992).

    ADS  Article  Google Scholar 

  27. 27

    Vinet, J-Y., Brisson, V. & Braccini, S. Scattered light noise in gravitational wave interferometric detectors: coherent effects. Phys. Rev. D 54, 1276–1286 (1996).

    ADS  Article  Google Scholar 

  28. 28

    Ottaway, D. J., Fritschel, P. & Waldman, S. J. Impact of upconverted scattered light on advanced interferometric gravitational wave detectors. Opt. Express 20, 8329–8336 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Sathyaprakash, B. & Schutz, B. Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativity 12, 2 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Steinlechner, S., Bauchrowitz, J., Eberle, T. & Schnabel, R. Strong Einstein–Podolsky–Rosen steering with unconditional entangled states. Phys. Rev. A 87, 022104 (2013).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge discussions with T. Eberle, V. Händchen and H. Lück. This research was financed by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich Transregio 7, project C8), the European Union Seventh Framework Programme for Research (FP7), project ‘Quantum Interfaces, Sensors and Communication based on Entanglement’ (Q-ESSENCE), and supported by the Centre for Quantum Engineering and Space–Time Research (QUEST) and the International Max Planck Research School (IMPRS) on Gravitational Wave Astronomy.

Author information




R.S. developed the initial idea for this work. H.M-E. and S.S. contributed to the theoretical background. S.S., J.B. and R.S. conceived the experiment. S.S., J.B. and M.M. conducted the experiment under supervision from K.D. and R.S.

Corresponding author

Correspondence to Roman Schnabel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 225 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steinlechner, S., Bauchrowitz, J., Meinders, M. et al. Quantum-dense metrology. Nature Photon 7, 626–630 (2013). https://doi.org/10.1038/nphoton.2013.150

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing