Quantum teleportation using a light-emitting diode


Teleportation of optical qubits can enable reliable logic operations in massively parallel quantum computers, as well as the formation of secure quantum networks. Photon teleportation has previously used laser-generated entangled photons created in random quantities. However, the practical complexities of the generating scheme coupled with errors caused by multipair emission have complicated its deployment in useful quantum information technology. Here, we demonstrate teleportation of single photonic qubits, mediated by individual pairs of entangled photons generated by an electrically driven entangled light source realized by embedding a single semiconductor quantum dot within a light-emitting diode. Teleportation is achieved with six general input states, with asymmetrically distributed fidelities, and an average fidelity above the limit possible with classical light. A theoretical framework is created that reproduces our experiments with close agreement. The unique sub-Poissonian nature of our photonic teleporter together with its electrical operation will help lift the complexity restriction of future quantum information applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up and ELED characteristics.
Figure 2: Third-order intensity correlations g(3) for antidiagonal polarized control photon Ac.
Figure 3: Fidelity of teleported qubits.


  1. 1

    Bennett, C. H. & Brassard, G. in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, 175–179 (IEEE Press, 1984).

  2. 2

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

  3. 3

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  4. 4

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  5. 5

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

  6. 6

    Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

  7. 7

    Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

  8. 8

    Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

  9. 9

    Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

  10. 10

    Halder, M. et al. Entangling independent photons by time measurement. Nature Phys. 3, 692–695 (2007).

  11. 11

    Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

  12. 12

    Fattal, D., Diamanti, E., Inoue, K. & Yamamoto, Y. Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett. 92, 037904 (2004).

  13. 13

    Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

  14. 14

    Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

  15. 15

    Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

  16. 16

    Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999).

  17. 17

    Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).

  18. 18

    Scarani, V., de Riedmatten, H., Marcikic, I., Zbinden, H. & Gisin, N. Four-photon correction in two-photon Bell experiments. Eur. Phys. J. D 32, 129–138 (2005).

  19. 19

    Gao, G. A. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

  20. 20

    Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849 (2004).

  21. 21

    Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

  22. 22

    Bennett, C. H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992).

  23. 23

    Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

  24. 24

    Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

  25. 25

    Koashi, M. Efficient quantum key distribution with practical sources and detectors. Preprint at http://arxiv.org/abs/quant-ph/0609180 (2006).

  26. 26

    Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

  27. 27

    Bennett, A. J. et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nature Phys. 6, 947–950 (2010).

  28. 28

    Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

  29. 29

    Young, R. J. et al. Bell-inequality violation with a triggered photon-pair source. Phys. Rev. Lett. 102, 030406 (2009).

  30. 30

    Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Processes and Applications (Wiley, 1992).

  31. 31

    Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).

Download references


The authors acknowledge partial financial support through the European Union Initial Training Network Spin Effects for Quantum Optoelectronics (SPIN-OPTRONICS) and the Seventh Framework Programme Future and Emerging Technologies Collaborative Project Quantum Interfaces, Sensors and Communication Based on Entanglement (Q-ESSENCE), the United Kingdom Engineering and Physical Sciences Research Council and the Cambridge Overseas Trust. The authors also thank T. Rudolph for useful discussions.

Author information

Samples were grown by I.F. and D.A.R. and processed by J.S.-S., C.L.S. and J.N. Optical measurements were carried out by J.N. and R.M.S. Calculations were performed by K.C.A.C and M.L. A.J.S. guided the work. All authors discussed the experiments, results and the interpretation of the results. R.M.S., J.N., K.C.A.C. and M.L. wrote the manuscript, with contributions from the other authors.

Correspondence to R. M. Stevenson or A. J. Shields.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1930 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nilsson, J., Stevenson, R., Chan, K. et al. Quantum teleportation using a light-emitting diode. Nature Photon 7, 311–315 (2013). https://doi.org/10.1038/nphoton.2013.10

Download citation

Further reading