Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot


Emission from a resonantly excited quantum emitter is a fascinating research topic within the field of quantum optics and is a useful source for different types of quantum light fields. The resonance spectrum consists of a single spectral line that develops into a triplet above saturation of the quantum emitter1,2,3. The three closely spaced photon channels from the resonance fluorescence have different photon statistical signatures4. We present a detailed photon statistics analysis of the resonance fluorescence emission triplet from a solid-state-based artificial atom, that is, a semiconductor quantum dot. The photon correlation measurements demonstrate both ‘single’ and ‘cascaded’ photon emission from the Mollow triplet sidebands5. The bright and narrow sideband emission (5.9 × 106 photons per second into the first lens) can be conveniently frequency-tuned by laser detuning over 15 times its linewidth (Δv ≈ 1.0 GHz). These unique properties make the Mollow triplet sideband emission a valuable light source for quantum light spectroscopy and quantum information applications, for example.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laser detuning dependent Mollow triplet spectra.
Figure 2: Photon correlations on Mollow spectral components.
Figure 3: Laser detuning dependent correlation of the combined Mollow sidebands signal.
Figure 4: Cross-correlation between spectrally selected Mollow sidebands.


  1. Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

    Article  ADS  Google Scholar 

  2. Flagg, E. B. et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Phys. 5, 203–207 (2009).

    Article  ADS  Google Scholar 

  3. Vamivakas, A. N., Zhong, Y., Yong, C-Y. & Atatüre, M. Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009).

    Article  ADS  Google Scholar 

  4. Nienhuis, G. Spectral correlations in resonance fluorescence. Phys. Rev. A 47, 510–518 (1993).

    Article  ADS  Google Scholar 

  5. Schrama, A., Nienhuis, G., Dijkerman, H. A., Steijsiger, C. & Heideman, H. G. Intensity correlations between the components of the resonance fluorescence triplet. Phys. Rev. A 45, 8045–8055 (1992).

    Article  ADS  Google Scholar 

  6. Aspect, A., Roger, G., Reynaud, S., Dalibard, J. & Cohen-Tannoudji, C. Time Correlations between the two sidebands of the resonance fluorescence triplet. Phys. Rev. Lett. 45, 617–620 (1980).

    Article  ADS  Google Scholar 

  7. Thompson, J. K., Simon, J., Huanquian, L. & Vuletić, V. A high-brightness source of narrowband, identical-photon pairs. Science 313, 74–77 (2006).

    Article  ADS  Google Scholar 

  8. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  9. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    Article  ADS  Google Scholar 

  10. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  11. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    Article  ADS  Google Scholar 

  12. Kiraz, A., Atatüre, M. & Imamoğlu, A. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

    Article  ADS  Google Scholar 

  13. Kamada H, et al. Exciton Rabi oscillation in a single quantum dot. Phys. Rev. Lett. 87, 246401 (2001).

    Article  ADS  Google Scholar 

  14. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  ADS  Google Scholar 

  15. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    Article  ADS  Google Scholar 

  16. Jundt, G., Robledo, L., Högele, A., Fält, S. & Imamoğlu, A. Observation of dressed excitonic states in a single quantum dot. Phys. Rev. Lett. 100, 177401 (2008).

    Article  ADS  Google Scholar 

  17. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

  18. Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

    Article  ADS  Google Scholar 

  19. Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

    Article  ADS  Google Scholar 

  20. Ulrich, S. M. et al. Dephasing of Mollow triplet sideband emission of a resonantly driven quantum dot in a microcavity. Phys. Rev. Lett. 106, 247403 (2011).

    Article  ADS  Google Scholar 

  21. Roy, C. & Hughes, S. Phonon-dressed Mollow triplet in the regime of cavity-QED. Phys. Rev. Lett. 106, 247402 (2011).

    Article  ADS  Google Scholar 

  22. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions (Wiley-VCH, 2004).

    Google Scholar 

  23. Aichele, T., Reinaudi, G. & Benson, O. Seperating cascaded photons from a single quantum dot: demonstration of multiplexed quantum cryptography. Phys. Rev. B 70, 235329 (2004).

    Article  ADS  Google Scholar 

  24. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

    Article  ADS  Google Scholar 

  25. Santori, C., Pelton, M., Salamo, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    Article  ADS  Google Scholar 

  26. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  27. Akopian, N., Wang, L., Rastelli, A., Schmidt O. G. & Zwiller, V. Hybrid semiconductor–atomic interface: slowing down single photons from a quantum dot. Nature Photon 5, 230–233 (2011).

    Article  ADS  Google Scholar 

  28. Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  29. Freedhoff, H. & Quang, T. Ultrasharp lines in the absorption and fluorescence spectra of an atom in a cavity. Phys. Rev. Lett. 72, 474–477 (1994).

    Article  ADS  Google Scholar 

  30. Quang, T. & Freedhoff, H. Atomic population inversion and enhancement of resonance fluorescence in a cavity. Phys. Rev. A 47, 2285–2292 (1993).

    Article  ADS  Google Scholar 

Download references


The authors acknowledge D. Richter and W-M. Schulz for providing high-quality samples and M. Wiesner for help in sample processing. We also appreciate a fruitful discussion with S. Hughes. The authors acknowledge financial support from the Deutsche Forschungs-gemeinschaft (research group 730). A.U. acknowledges funding from the International Max Planck Research School for Advanced Materials. S.W. acknowledges financial support from the Carl-Zeiss-Stiftung.

Author information

Authors and Affiliations



R.R. and M.J. designed the sample structure. A.U., S.W., S.M.U. and P.M. conceived the experiments. A.U., S.W. and S.M.U. performed the experiments and analysed the data. A.U., S.W., S.M.U. and P.M. wrote the manuscript, with input from the other authors.

Corresponding author

Correspondence to A. Ulhaq.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 397 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ulhaq, A., Weiler, S., Ulrich, S. et al. Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nature Photon 6, 238–242 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing