Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conversion of broadband to narrowband thermal emission through energy recycling

Abstract

Converting from a broadband to a narrowband thermal emission spectrum with minimal loss of energy is important in the creation of efficient environmental sensors and biosensors1,2 as well as thermo-photovoltaic power generation systems3,4. Here, we demonstrate such thermal emission control by manipulating photonic modes with photonic crystals as well as material absorption with quantum-well intersubband transitions. We show that the emission peak intensity for our device can be more than four times greater than that of a blackbody sample under the same input power and thermal management conditions due to an increase in the temperature compared to the blackbody reference, and the emission bandwidth and angular spread are narrowed by a factor of 30 and 8, respectively. These results indicate that the energy saved by thermal emission control can be recycled and concentrated to enhance the narrow peak emission intensity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal emission control device and its basic characteristics.
Figure 2: Thermal emission control device modified for current injection heating.
Figure 3: Thermal emission characteristics of the MQW + 2D PC device and a blackbody reference sample.
Figure 4: Temperature dependence of input power and energy (power) distribution.

Similar content being viewed by others

References

  1. Kendall, D. N. Applied Infrared Spectroscopy (Reinhold, 1966).

    Google Scholar 

  2. Werle, P. et al. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Laser Eng. 37, 101–114 (2002).

    Article  Google Scholar 

  3. Swanson, R. M. A proposed thermophotovoltaic solar energy conversion system. Proc. IEEE 67, 446–447 (1979).

    Article  ADS  Google Scholar 

  4. Bermel, P. et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18, A314–A334 (2010).

    Article  Google Scholar 

  5. Planck, M. The Theory of Heat Radiation (Dover Publication, 1912).

    MATH  Google Scholar 

  6. Brace, D. B. The Laws of Radiation and Absorption: Memoirs by Prévost, Stewart, Kirchhoff, and Kirchhoff and Bunsen (American Book Company, 1901).

    Google Scholar 

  7. Pralle, M. U. et al. Photonic crystal enhanced narrow-band infrared emitters. Appl. Phys. Lett. 81, 4685–4687 (2002).

    Article  ADS  Google Scholar 

  8. Lin, S. Y., Moreno, J. & Fleming, J. G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl. Phys. Lett. 83, 380–382 (2003).

    Article  ADS  Google Scholar 

  9. Lin, S.-Y., Fleming, J. G. & El-Kady, I. Experimental observation of photonic-crystal emission near a photonic band edge. Appl. Phys. Lett. 83, 593–595 (2003).

    Article  ADS  Google Scholar 

  10. Puscasu, I. et al. Extraordinary emission from two-dimensional plasmonic–photonic crystals. J. Appl. Phys. 98, 013531 (2005).

    Article  ADS  Google Scholar 

  11. Wan, J. T. K. & Chan, C. T. Thermal emission by metallic photonic crystal slabs. Appl. Phys. Lett. 89, 041915 (2006).

    Article  ADS  Google Scholar 

  12. Chan, D. L. C., Celanovic, I., Joannopoulos, J. D. & Soljačić, M. Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances. Phys. Rev. A 74, 064901 (2006).

    Article  ADS  Google Scholar 

  13. Florescu, M. et al. Improving solar cell efficiency using photonic band-gap materials. Solar Energ. Mater. Solar Cells 91, 1599–1610 (2007).

    Article  Google Scholar 

  14. Waymouth, J. F. Where will the next generation of lamps come from? J. Light Vis. Environ. 13, 51–68 (1989).

    Article  Google Scholar 

  15. Maruyama, S., Kashiwa, T., Yugami, H. & Esashi, M. Thermal radiation from two-dimensionally confined modes in microcavities. Appl. Phys. Lett. 79, 1393–1395 (2001).

    Article  ADS  Google Scholar 

  16. Liu, X. L. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).

    Article  ADS  Google Scholar 

  17. Ikeda, K. et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Appl. Phys. Lett. 92, 021117 (2008).

    Article  ADS  Google Scholar 

  18. Asano, T., Mochizuki, K., Yamaguchi, M., Chaminda, M. & Noda, S. Spectrally selective thermal radiation based on intersubband transitions and photonic crystals. Opt. Express 17, 19190–19203 (2009).

    Article  ADS  Google Scholar 

  19. West, L. C. & Eglash, S. J. First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 46, 1156–1158 (1985).

    Article  ADS  Google Scholar 

  20. Noda, S., Yamashita, T., Ohya, M., Muromoto, Y. & Sasaki, A. All-optical modulation for semiconductor laser by using three energy levels in n-doped quantum well. IEEE J. Quantum Electron. 29, 1640–1647 (1993).

    Article  ADS  Google Scholar 

  21. Faist, J. et al. Short wavelength (λ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Appl. Phys. Lett. 72, 680–682 (1998).

    Article  ADS  Google Scholar 

  22. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  ADS  Google Scholar 

  23. Miyai, E. et al. Lasers producing tailored beams. Nature 441, 946–946 (2006).

    Article  ADS  Google Scholar 

  24. Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 75, 316–318 (1999).

    Article  ADS  Google Scholar 

  25. Chutinan, A., Mochizuki, M., Imada, M. & Noda, S. Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs. Appl. Phys. Lett. 79, 2690–2692 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JST, CREST, a Grant-in-Aid for Scientific Research from JSPS, and by Kyoto University Global Center of Excellence (G-COE).

Author information

Authors and Affiliations

Authors

Contributions

S.N. supervised the entire project with T.A. M.D.Z. fabricated the samples, performed the experiments and analysed the data with K.M., A.O. and T.I. S.N., M.D.Z., T.A., A.O. and T.I. discussed the results and wrote the paper.

Corresponding author

Correspondence to Susumu Noda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Zoysa, M., Asano, T., Mochizuki, K. et al. Conversion of broadband to narrowband thermal emission through energy recycling. Nature Photon 6, 535–539 (2012). https://doi.org/10.1038/nphoton.2012.146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing