Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polymer solar cells

Abstract

Recent progress in the development of polymer solar cells has improved power-conversion efficiencies from 3% to almost 9%. Based on semiconducting polymers, these solar cells are fabricated from solution-processing techniques and have unique prospects for achieving low-cost solar energy harvesting, owing to their material and manufacturing advantages. The potential applications of polymer solar cells are broad, ranging from flexible solar modules and semitransparent solar cells in windows, to building applications and even photon recycling in liquid-crystal displays. This Review covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Introduction to PSCs.
Figure 2
Figure 3: Morphology in PSCs.
Figure 4: Grazing-incidence X-ray diffraction images of polymer–acceptor films.
Figure 5: Novel structure and applications of PSCs.

References

  1. 1

    www.eia.gov/aer

  2. 2

    Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers 2nd edn (Oxford Univ., 1999).

    Google Scholar 

  3. 3

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    ADS  Google Scholar 

  4. 4

    Tang, C. W. Multilayer organic photovoltaic elements. US patent 4, 164,431 (1979).

  5. 5

    Tang, C. W. 2-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    ADS  Google Scholar 

  6. 6

    Liu, Y. S. et al. Spin-coated small molecules for high performance solar cells. Adv. Energy Mater. 1, 771–775 (2011).

    Google Scholar 

  7. 7

    Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009).

    Google Scholar 

  8. 8

    Hummelen, J. C. et al. Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 60, 532–538 (1995).

    Google Scholar 

  9. 9

    Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron-transfer from a conducting polymer to Buckminsterfullerene. Science 258, 1474–1476 (1992).

    ADS  Google Scholar 

  10. 10

    Morita, S., Zakhidov, A. A. & Yoshino, K. Doping effect of Buckminsterfullerene in conducting polymer — change of absorption-spectrum and quenching of luminescence. Solid State Commun. 82, 249–252 (1992).

    ADS  Google Scholar 

  11. 11

    Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Semiconducting polymers (as donors) and Buckminsterfullerene (as acceptor) — photoinduced electron-transfer and heterojunction devices. Synth. Met. 59, 333–352 (1993).

    Google Scholar 

  12. 12

    Hiramoto, M., Fujiwara, H. & Yokoyama, M. P-I-N like behavior in 3-layered organic solar-cells having a co-deposited interlayer of pigments. J. Appl. Phys. 72, 3781–3787 (1992).

    ADS  Google Scholar 

  13. 13

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells — enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    ADS  Google Scholar 

  14. 14

    Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    ADS  Google Scholar 

  15. 15

    Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864–868 (2005).

    ADS  Google Scholar 

  16. 16

    Ma, W. L., Yang, C. Y., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    Google Scholar 

  17. 17

    Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003).

    ADS  Google Scholar 

  18. 18

    Yang, X. & Loos, J. Toward high-performance polymer solar cells: The Importance of Morphology Control. Macromolecules 40, 1353–1362 (2007).

    ADS  Google Scholar 

  19. 19

    McGehee, M. D. Nanostructured organic–inorganic hybrid solar cells. MRS Bull. 34, 95–100 (2009).

    Google Scholar 

  20. 20

    Dayal, S., Kopidakis, N., Olson, D. C., Ginley, D. S. & Rumbles, G. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett. 10, 239–242 (2010).

    ADS  Google Scholar 

  21. 21

    Weickert, J., Dunbar, R. B., Hesse, H. C., Wiedemann, W. & Schmidt-Mende, L. Nanostructured organic and hybrid solar cells. Adv. Mater. 23, 1810–1828 (2011).

    Google Scholar 

  22. 22

    Wudl, F. & Srdanov, G. Conducting polymer formed of poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene). US patent 5,189,136 (1993).

  23. 23

    Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S. & Denk, P. Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288–1290 (2002).

    ADS  Google Scholar 

  24. 24

    Wienk, M. M. et al. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371–3375 (2003).

    Google Scholar 

  25. 25

    Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).

    ADS  Google Scholar 

  26. 26

    Padinger, F., Rittberger, R. S. & Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003).

    Google Scholar 

  27. 27

    Muhlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).

    Google Scholar 

  28. 28

    Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    ADS  Google Scholar 

  29. 29

    Blouin, N., Michaud, A. & Leclerc, M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19, 2295–2300 (2007).

    Google Scholar 

  30. 30

    Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    ADS  Google Scholar 

  31. 31

    Liang, Y. Y. et al. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2009).

    Google Scholar 

  32. 32

    Liang, Y. Y. et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).

    Google Scholar 

  33. 33

    Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649–653 (2009).

    ADS  Google Scholar 

  34. 34

    Price, S. C., Stuart, A. C., Yang, L. Q., Zhou, H. X. & You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer–fullerene solar cells. J. Am. Chem. Soc. 133, 4625–4631 (2011).

    Google Scholar 

  35. 35

    Zhou, H. X. et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995–2998 (2011).

    Google Scholar 

  36. 36

    Su, M. S. et al. Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives. Adv. Mater. 23, 3315–3319 (2011).

    Google Scholar 

  37. 37

    Yang, J. et al. A robust inter-connecting layer for achieving high performance tandem polymer solar cells. Adv. Mater. 23, 3465–3470 (2011).

    Google Scholar 

  38. 38

    Sun, Y. M. et al. Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv. Mater. 23, 2226–2230 (2011).

    Google Scholar 

  39. 39

    Chu, T. Y. et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno3,2-b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%. J. Am. Chem. Soc. 133, 4250–4253 (2011).

    Google Scholar 

  40. 40

    Amb, C. M. et al. Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J. Am. Chem. Soc. 133, 10062–10065 (2011).

    Google Scholar 

  41. 41

    Cheng, Y. J., Yang, S. H. & Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Google Scholar 

  42. 42

    Liang, Y. Y. & Yu, L. P. Development of semiconducting polymers for solar energy harvesting. Polym. Rev. 50, 454–473 (2010).

    Google Scholar 

  43. 43

    Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells — towards 10 % energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Google Scholar 

  44. 44

    Yun, J. J. et al. Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48%. Appl. Phys. Lett. 87, 123102 (2005).

    ADS  Google Scholar 

  45. 45

    Mccullough, R. D., Tristramnagle, S., Williams, S. P., Lowe, R. D. & Jayaraman, M. Self-orienting head-to-tail poly(3-alkylthiophenes) — new insights on structure–property relationships in conducting polymers. J. Am. Chem. Soc. 115, 4910–4911 (1993).

    Google Scholar 

  46. 46

    Yu, W. L., Meng, H., Pei, J. & Huang, W. Tuning redox behavior and emissive wavelength of conjugated polymers by p–n diblock structures. J. Am. Chem. Soc. 120, 11808–11809 (1998).

    Google Scholar 

  47. 47

    Zhou, Q. M. et al. Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Appl. Phys. Lett. 84, 1653–1655 (2004).

    ADS  Google Scholar 

  48. 48

    Gadisa, A. et al. A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility. Adv. Funct. Mater. 17, 3836–3842 (2007).

    Google Scholar 

  49. 49

    Huo, L. J., Hou, J. H., Zhang, S. Q., Chen, H. Y. & Yang, Y. A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew. Chem. Int. Ed. 49, 1500–1503 (2010).

    Google Scholar 

  50. 50

    Vandewal, K., Tvingstedt, K., Gadisa, A., Inganas, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater. 8, 904–909 (2009).

    ADS  Google Scholar 

  51. 51

    Liang, Y. Y. & Yu, L. P. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 43, 1227–1236 (2010).

    Google Scholar 

  52. 52

    Havinga, E. E., Tenhoeve, W. & Wynberg, H. Alternate donor–acceptor small-band-gap semiconducting polymers — polysquaraines and polycroconaines. Synth. Met. 55, 299–306 (1993).

    Google Scholar 

  53. 53

    Zhang, Q. T. & Tour, J. M. Low optical bandgap polythiophenes by an alternating donor/acceptor repeat unit strategy. J. Am. Chem. Soc. 119, 5065–5066 (1997).

    Google Scholar 

  54. 54

    Huang, F. et al. Development of new conjugated polymers with donor–pi-bridge–acceptor side chains for high performance solar cells. J. Am. Chem. Soc. 131, 13886–13887 (2009).

    Google Scholar 

  55. 55

    Hou, J. H., Chen, H. Y., Zhang, S. Q., Li, G. & Yang, Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 130, 16144–16145 (2008).

    Google Scholar 

  56. 56

    Chen, H. Y. et al. Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv. Mater. 22, 371–375 (2010).

    ADS  Google Scholar 

  57. 57

    Zhang, Y. et al. Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells. Chem. Mater. 23, 2289–2291 (2011).

    Google Scholar 

  58. 58

    He, F. et al. Tetrathienoanthracene-based copolymers for efficient solar cells. J. Am. Chem. Soc. 133, 3284–3287 (2011).

    Google Scholar 

  59. 59

    Chen, D., Liu, F., Wang, C., Nakahara, A. & Russell, T. P. Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. Nano Lett. 11, 2071–2078 (2011).

    ADS  Google Scholar 

  60. 60

    Piliego, C. et al. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 7595–7597 (2010).

    Google Scholar 

  61. 61

    Lenes, M. et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv. Mater. 20, 2116–2119 (2008).

    ADS  Google Scholar 

  62. 62

    Laird, D. W. et al. Organic photovoltaic devices comparising fullerenes and derivatives thereof. US patent 20080319207A1 (2008).

  63. 63

    Ross, R. B. et al. Endohedral fullerenes for organic photovoltaic devices. Nature Mater. 8, 208–212 (2009).

    ADS  Google Scholar 

  64. 64

    He, Y. J., Chen, H. Y., Hou, J. H. & Li, Y. F. Indene-C(60) bisadduct: A new acceptor for high-performance polymer solar cells. J. Am. Chem. Soc. 132, 1377–1382 (2010).

    Google Scholar 

  65. 65

    Zhao, G. J., He, Y. J. & Li, Y. F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization. Adv. Mater. 22, 4355–4358 (2010).

    Google Scholar 

  66. 66

    Zhang, G. B., Fu, Y. Y., Zhang, Q. & Xie, Z. Y. Benzo[1,2-b:4,5-b']dithiophene-dioxopyrrolothiophen copolymers for high performance solar cells. Chem. Commun. 46, 4997–4999 (2010).

    Google Scholar 

  67. 67

    Zou, Y. P. et al. A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J. Am. Chem. Soc. 132, 5330–5331 (2010).

    Google Scholar 

  68. 68

    Zhang, Y. et al. Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione. Chem. Mater. 22, 2696–2698 (2010).

    Google Scholar 

  69. 69

    Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    ADS  Google Scholar 

  70. 70

    Zhang, F. L. et al. Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv. Funct. Mater. 16, 667–674 (2006).

    Google Scholar 

  71. 71

    Li, G. et al. 'Solvent annealing' effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 17, 1636–1644 (2007).

    Google Scholar 

  72. 72

    Zhang, R. et al. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J. Am. Chem. Soc. 128, 3480–3481 (2006).

    Google Scholar 

  73. 73

    Yang, X. N. et al. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579–583 (2005).

    ADS  Google Scholar 

  74. 74

    Moon, J. S., Lee, J. K., Cho, S. N., Byun, J. Y. & Heeger, A. J. 'Columnlike' structure of the cross-sectional morphology of bulk heterojunction materials. Nano Lett. 9, 230–234 (2009).

    ADS  Google Scholar 

  75. 75

    Weyland, M. & Midgley, P. A. Electron tomography. Mater. Today 7, 32–40 (December 2004).

    Google Scholar 

  76. 76

    van Bavel, S. S., Sourty, E., de With, G. & Loos, J. Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. Nano Lett. 9, 507–513 (2009).

    ADS  Google Scholar 

  77. 77

    Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: Fullerene solar cell blends. Nature Mater. 7, 158–164 (2008).

    ADS  Google Scholar 

  78. 78

    Xu, Z. et al. Vertical phase separation in poly(3-hexylthiophene): Fullerene derivative blends and its advantage for inverted structure solar cells. Adv. Funct. Mater. 19, 1227–1234 (2009).

    Google Scholar 

  79. 79

    Germack, D. S. et al. Substrate-dependent interface composition and charge transport in films for organic photovoltaics. Appl. Phys. Lett. 94, 233303 (2009).

    ADS  Google Scholar 

  80. 80

    Kiel, J. W., Mackay, M. E., Kirby, B. J., Maranville, B. B. & Majkrzak, C. F. Phase-sensitive neutron reflectometry measurements applied in the study of photovoltaic films. J. Chem. Phys. 133, 074902 (2010).

    ADS  Google Scholar 

  81. 81

    Parnell, A. J. et al. Depletion of PCBM at the cathode interface in P3HT/PCBM thin films as quantified via neutron reflectivity measurements. Adv. Mater. 22, 2444–2447 (2010).

    Google Scholar 

  82. 82

    Erb, T. et al. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 15, 1193–1196 (2005).

    Google Scholar 

  83. 83

    DeLongchamp, D. M., Kline, R. J., Fischer, D. A., Richter, L. J. & Toney, M. F. Molecular characterization of organic electronic films. Adv. Mater. 23, 319–337 (2011).

    Google Scholar 

  84. 84

    Chen, L. M., Xu, Z., Hong, Z. R. & Yang, Y. Interface investigation and engineering — achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20, 2575–2598 (2010).

    Google Scholar 

  85. 85

    Shrotriya, V., Li, G., Yao, Y., Chu, C. W. & Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 0735080 (2006).

    Google Scholar 

  86. 86

    Irwin, M. D., Buchholz, B., Hains, A. W., Chang, R. P. H. & Marks, T. J. P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl Acad. Sci. USA 105, 2783–2787 (2008).

    ADS  Google Scholar 

  87. 87

    Steirer, K. X. et al. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers. Adv. Energy Mater. 1, 813–820 (2011).

    Google Scholar 

  88. 88

    Chen, C. P., Chen, Y. D. & Chuang, S. C. High-performance and highly durable inverted organic photovoltaics embedding solution-processable vanadium oxides as an interfacial hole-transporting layer. Adv. Mater. 23, 3859–3863 (2011).

    Google Scholar 

  89. 89

    Hung, L. S., Tang, C. W. & Mason, M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997).

    ADS  Google Scholar 

  90. 90

    Jonsson, S. K. M., Carlegrim, E., Zhang, F., Salaneck, W. R. & Fahlman, M. Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: The role of LiF. Jpn. J. Appl. Phys. 44, 3695–3701 (2005).

    ADS  Google Scholar 

  91. 91

    Lee, C. H. Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface. Synth. Met. 91, 125–127 (1997).

    Google Scholar 

  92. 92

    Jabbour, G. E., Kippelen, B., Armstrong, N. R. & Peyghambarian, N. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Appl. Phys. Lett. 73, 1185–1187 (1998).

    ADS  Google Scholar 

  93. 93

    Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Google Scholar 

  94. 94

    Gilot, J., Barbu, I., Wienk, M. M. & Janssen, R. A. J. The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl. Phys. Lett. 91, 113520 (2007).

    ADS  Google Scholar 

  95. 95

    Lee, K. et al. Air-stable polymer electronic devices. Adv. Mater. 19, 2445–2449 (2007).

    ADS  Google Scholar 

  96. 96

    Park, M. H., Li, J. H., Kumar, A., Li, G. & Yang, Y. Doping of the metal oxide nanostructure and its influence in organic electronics. Adv. Funct. Mater. 19, 1241–1246 (2009).

    Google Scholar 

  97. 97

    Yip, H. L., Hau, S. K., Baek, N. S., Ma, H. & Jen, A. K. Y. Polymer solar cells that use self-assembled-monolayer-modified ZnO/metals as cathodes. Adv. Mater. 20, 2376–2382 (2008).

    Google Scholar 

  98. 98

    Huang, F., Wu, H. B. & Cao, Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev. 39, 2500–2521 (2010).

    Google Scholar 

  99. 99

    Guo, T.-F., Chang, S.-C., Pyo, S. & Yang, Y. Vertically integrated electronic circuits via a combination of self-assembled polyelectrolytes, ink-jet printing, and electroless metal plating processes. Langmuir 18, 8142–8147 (2002).

    Google Scholar 

  100. 100

    He, Z. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011).

    Google Scholar 

  101. 101

    Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. C. 93, 394–412 (2009).

    Google Scholar 

  102. 102

    Li, G., Chu, C. W., Shrotriya, V., Huang, J. & Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 88, 253503 (2006).

    ADS  Google Scholar 

  103. 103

    Liao, H. H., Chen, L. M., Xu, Z., Li, G. & Yang, Y. Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl. Phys. Lett. 92, 173303 (2008).

    ADS  Google Scholar 

  104. 104

    White, M. S., Olson, D. C., Shaheen, S. E., Kopidakis, N. & Ginley, D. S. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).

    ADS  Google Scholar 

  105. 105

    Waldauf, C. et al. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 89, 233517 (2006).

    ADS  Google Scholar 

  106. 106

    Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. & Grimes, C. A. High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl. Phys. Lett. 91, 152111 (2007).

    ADS  Google Scholar 

  107. 107

    Sekine, N., Chou, C. H., Kwan, W. L. & Yang, Y. ZnO nano-ridge structure and its application in inverted polymer solar cell. Org. Electron. 10, 1473–1477 (2009).

    Google Scholar 

  108. 108

    Li, S. S., Tu, K. H., Lin, C. C., Chen, C. W. & Chhowalla, M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 3169–3174 (2010).

    Google Scholar 

  109. 109

    King, R. R. et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).

    ADS  Google Scholar 

  110. 110

    Gilot, J., Wienk, M. M. & Janssen, R. A. J. Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90, 143512 (2007).

    ADS  Google Scholar 

  111. 111

    Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    ADS  Google Scholar 

  112. 112

    Sista, S. et al. Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 22, 380–383 (2010).

    Google Scholar 

  113. 113

    Lipomi, D. J., Tee, B. C. K., Vosgueritchian, M. & Bao, Z. N. Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011).

    Google Scholar 

  114. 114

    Zhu, R., Kumar, A. & Yang, Y. Polarizing organic photovoltaics. Adv. Mater. 23, 4193–4198 (2011).

    Google Scholar 

  115. 115

    Park, H. J., Xu, T., Lee, J. Y., Ledbetter, A. & Guo, L. J. Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano 5, 7055–7060 (2011).

    Google Scholar 

  116. 116

    Peters, C. H. et al. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011).

    Google Scholar 

  117. 117

    www.nrel.gov/ncpv/images/efficiency_chart.jpg

  118. 118

    Dou, L. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photon. 6, 180–185 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Dou for valuable discussion and K. Cha for proofreading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon 6, 153–161 (2012). https://doi.org/10.1038/nphoton.2012.11

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing