Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in quantum metrology

Abstract

The statistical error in any estimation can be reduced by repeating the measurement and averaging the results. The central limit theorem implies that the reduction is proportional to the square root of the number of repetitions. Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches. In this Review, we analyse some of the most promising recent developments of this research field and point out some of the new experiments. We then look at one of the major new trends of the field: analyses of the effects of noise and experimental imperfections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ramsey interferometry.
Figure 2: Schematic representation of parallel estimation strategies.
Figure 3: Sequential strategies.

References

  1. 1

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Article  Google Scholar 

  2. 2

    Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. 3

    Wineland, D. J., Bollinger, J. J., Itano, W. M. & Moore, F. L. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  ADS  Google Scholar 

  4. 4

    Braunstein, S. L. Quantum limits on precision measurements of phase. Phys. Rev. Lett. 69, 3598–3601 (1992).

    Article  ADS  Google Scholar 

  5. 5

    Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  6. 6

    Holland, M. J. & Burnett, K. Interferometric detection of optical phase shift at the Heisenberg limit. Phys. Rev. Lett. 71, 1355–1358 (1993).

    Article  ADS  Google Scholar 

  7. 7

    O'Brien, J. L. Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  8. 8

    Helstrom, C. W. Quantum Detection and Estimation Theory (Academic, 1976).

    MATH  Google Scholar 

  9. 9

    Braunstein, S. L., Caves, M. C. & Milburn, G. J. Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135–173 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. 10

    Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. 11

    Holevo, A. S. Probabilistic and Statistical Aspect of Quantum Theory (Edizioni della Normale, 2011).

    Book  Google Scholar 

  12. 12

    Hayashi, M. (ed.) Asymptotic Theory of Quantum Statistical Inference: selected papers (World Scientific, 2005).

    Book  MATH  Google Scholar 

  13. 13

    Hayashi, M. Quantum Information Ch. 6–7 (Springer, 2006).

    MATH  Google Scholar 

  14. 14

    Paris, M. G. A. Quantum estimation for quantum technology. Int. J. Quant. Inf. 7, 125–137 (2009).

    Article  MATH  Google Scholar 

  15. 15

    Cramér, H. Mathematical Methods of Statistics Ch. 32–34 (Princeton Univ., 1946).

    MATH  Google Scholar 

  16. 16

    Hayashi, M. & Matsumoto, K. Asymptotic performance of optimal state estimation in qubit system. J. Math. Phys. 49, 102101 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. 17

    Gill, R. D. & Massar, S. State estimation for large ensembles. Phys. Rev. A 61, 042312 (1999).

    Article  ADS  Google Scholar 

  18. 18

    Fujiwara, A. Strong consistency and asymptotic efficiency for adaptive quantum estimation problems. J. Phys. A 39, 12489–12504 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. 19

    Nagaoka, H. An asymptotic efficient estimator for a one-dimensional parametric model of quantum statistical operators. Proc. IEEE Inf. Symp. Inform. Theory 198 (1988).

  20. 20

    Nagaoka, H. On the parameter estimation problem for quantum statistical models. Proc. 12th Symp. Inform. Theory Appl. 577–582 (1989).

  21. 21

    Tsang, M., Wiseman, H. M. & Caves, C. M. Fundamental quantum limit to wave form estimation. Preprint at http://arxiv.org/abs/1006.5407 (2010).

  22. 22

    Bennett, C. H. et al. Quantum nonlocality without entanglement. Phys. Rev. A, 59 1070–1091 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. 23

    Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001).

    Article  ADS  Google Scholar 

  24. 24

    Hayashi, M. Comparison between the Cramér–Rao and the mini-max approaches in quantum channel estimation. Preprint at http://arxiv.org/abs/1003.4575 (2010).

  25. 25

    Fujiwara, A. & Imai, H. Quantum parameter estimation of a generalized Pauli channel. J. Phys. A 36, 8093–8103 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. 26

    Fischer, D. G., Mack, H., Cirone, M. A. & Freyberger, M. Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001).

    Article  ADS  Google Scholar 

  27. 27

    Fujiwara, A. Estimation of SU(2) operation and dense coding: An information geometric approach. Phys. Rev. A 65, 012316 (2002).

    Article  ADS  Google Scholar 

  28. 28

    Buzek, V., Derka, R. & Massar, S. Optimal quantum clocks. Phys. Rev. Lett. 82, 2207–2210 (1999).

    Article  ADS  Google Scholar 

  29. 29

    de Burgh, M. & Bartlett, S. D. Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement. Phys. Rev. A 72, 042301 (2005).

    Article  ADS  Google Scholar 

  30. 30

    Chiribella, G., D'Ariano, G. M., Perinotti, P. & Sacchi, M. F. Efficient use of quantum resources for the transmission of a reference frame. Phys. Rev. Lett. 93, 180503 (2004).

    Article  ADS  Google Scholar 

  31. 31

    Bagan, E., Baig, M. & Munoz-Tapia, R. Quantum reverse-engineering and reference frame alignment without non-local correlations. Phys. Rev. A 70, 030301 (2004).

    Article  ADS  Google Scholar 

  32. 32

    Hayashi, M. Parallel treatment of estimation of SU(2) and phase estimation. Phys. Lett. A 354, 183–189 (2006).

    Article  ADS  Google Scholar 

  33. 33

    van Dam, W., D'Ariano, G. M., Ekert, A., Macchiavello, C. & Mosca, M. Optimal quantum circuits for general phase estimation. Phys. Rev. Lett. 98, 090501 (2007).

    Article  ADS  MATH  Google Scholar 

  34. 34

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  35. 35

    Imai, H. & Fujiwara, A. Geometry of optimal estimation scheme for SU(D) channels. J. Phys. A 40, 4391–4400 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. 36

    Ballester, M. Estimation of unitary quantum operations. Phys. Rev. A 69, 022303 (2004).

    Article  ADS  Google Scholar 

  37. 37

    Sasaki, M., Ban, M. & Barnett, S. M. Optimal parameter estimation of depolarizing channel. Phys. Rev. A 66, 022308 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  38. 38

    Ji, Z., Wang, G., Duan, R., Feng, Y. & Ying, M. Parameter estimation of quantum channels. IEEE Trans. Inf. Theory 54, 5172–5185 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  39. 39

    Luis, A. Phase-shift amplification for precision measurements without nonclassical states. Phys. Rev. A 65, 025802 (2002).

    Article  ADS  Google Scholar 

  40. 40

    Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

    Article  ADS  Google Scholar 

  41. 41

    Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986).

    Article  ADS  Google Scholar 

  42. 42

    Hradil, Z. et al. Quantum phase in interferometry. Phys. Rev. Lett. 76, 4295–4299 (1996).

    Article  ADS  Google Scholar 

  43. 43

    Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  ADS  Google Scholar 

  44. 44

    Sorensen, A., Duan, L. M., Cirac, J. I. & Zoller, P. Many-particle entanglement with Bose-Einstein condensates. Nature 409, 63–66 (2001).

    Article  ADS  Google Scholar 

  45. 45

    Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion–qubit phase gate. Nature 422, 412–415 (2003).

    Article  ADS  Google Scholar 

  46. 46

    Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    Article  ADS  Google Scholar 

  47. 47

    Leibfried, D. et al. Creation of a six-atom 'Schrödinger-cat' state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  48. 48

    Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001).

    Article  ADS  Google Scholar 

  49. 49

    Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose–Einstein condensate. Science 291, 2386–2389 (2001).

    Article  ADS  Google Scholar 

  50. 50

    Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  51. 51

    Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166–1168 (2009).

    Article  ADS  Google Scholar 

  52. 52

    Nielsen, M. A. & Chuang, I. L. Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321–324 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. 53

    Hayashi, M. Phase estimation with photon number constraint. Preprint at http://arxiv.org/abs/1011.2546 (2010).

  54. 54

    Hradil, Z. & Rehácek, J. Quantum interference and Fisher information. Phys. Lett. A 334, 267–272 (2005).

    Article  ADS  MATH  Google Scholar 

  55. 55

    Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).

    Article  ADS  Google Scholar 

  56. 56

    Duking, G. A. & Dowling, J. P. Local and global distinguishability in quantum interferometry. Phys. Rev. Lett. 99, 070801 (2007).

    Article  ADS  Google Scholar 

  57. 57

    Kok, P., Lee, H. & Dowling, J. P. Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002).

    Article  ADS  Google Scholar 

  58. 58

    Pryde, G. J. & White, A. G. Creation of maximally entangled photon-number states using optical fiber multiports. Phys. Rev. A 68, 052315 (2003).

    Article  ADS  Google Scholar 

  59. 59

    Cable, H. & Dowling, J. P. Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phys. Rev. Lett. 99, 163604 (2007).

    Article  ADS  Google Scholar 

  60. 60

    Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    Article  ADS  Google Scholar 

  61. 61

    Lamas-Linares, A., Howell, J. C. & Bouwmeester D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001).

    Article  ADS  Google Scholar 

  62. 62

    D'Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).

    Article  ADS  Google Scholar 

  63. 63

    Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).

    Article  ADS  Google Scholar 

  64. 64

    Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    Article  ADS  Google Scholar 

  65. 65

    Okamoto, R. et al. Beating the standard quantum limit: Phase super-sensitivity of N-photon interferometers. New J. Phys. 10, 073033 (2008).

    Article  ADS  Google Scholar 

  66. 66

    Kacprowicz, M., Demkowicz-Dobrzanski, R., Wasilewski, W., Banaszek, K. & Walmsley, I. A. Experimental quantum-enhanced estimation of a lossy phase shift. Nature Photon. 4, 357–360 (2010).

    Article  ADS  Google Scholar 

  67. 67

    Hofmann, H. F. & Ono, T. High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light. Phys. Rev. A 76, 031806(R) (2007).

    Article  ADS  Google Scholar 

  68. 68

    Ono, T. & Hofmann, H. F. Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A 81, 033819 (2010).

    Article  ADS  Google Scholar 

  69. 69

    Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. 70

    Pezzé, L. & Smerzi, A. Mach–Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys Rev. Lett. 100, 073601 (2008).

    Article  ADS  Google Scholar 

  71. 71

    Monras, A. Optimal phase measurements with pure Gaussian states. Phys. Rev. A 73, 033821 (2006).

    Article  ADS  Google Scholar 

  72. 72

    Cable, H. & Durkin, G. A. Parameter estimation with entangled photons produced by parametric down-conversion. Phys. Rev. Lett. 105, 013603 (2010).

    Article  ADS  Google Scholar 

  73. 73

    Braunstein, S. L. How large a sample is needed for maximum likelihood estimator to be approximately Gaussian? J. Phys. A 25, 3813–3826 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. 74

    Pezzé, L. & Smerzi, A. Phase sensitivity of a Mach–Zehnder interferometer. Phys. Rev. A 73, 011801(R) (2006).

    Article  ADS  Google Scholar 

  75. 75

    Pezzé, L. & Smerzi, A. Sub shot-noise interferometric phase sensitivity with beryllium ions Schrödinger cat states. Europhys. Lett. 78, 30004 (2007).

    Article  ADS  Google Scholar 

  76. 76

    Lane, A. S., Braunstein, S. L. & Caves, C. M. Maximum-likelihood statistics of multiple quantum phase measurements. Phys. Rev. A 47, 1667–1696 (1993).

    Article  ADS  Google Scholar 

  77. 77

    Pregnell, K. L. & Pegg, D. T. Retrodictive quantum optical state engineering. J. Mod. Opt. 51, 1613–1626 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. 78

    Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).

    Article  ADS  Google Scholar 

  79. 79

    Luis, A. Nonlinear transformations and the Heisenberg limit. Phys. Lett. A 329, 8–13 (2004).

    Article  ADS  MATH  Google Scholar 

  80. 80

    Beltrán, J. & Luis, A. Breaking the Heisenberg limit with inefficient detectors. Phys. Rev. A 72, 045801 (2005).

    Article  ADS  Google Scholar 

  81. 81

    Luis, A., Quantum limits, nonseparable transformations, and nonlinear optics. Phys. Rev. A 76, 035801 (2007).

    Article  ADS  Google Scholar 

  82. 82

    Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007).

    Article  ADS  Google Scholar 

  83. 83

    Boixo, S. et al. Quantum-limited metrology with product states. Phys. Rev. A 77, 012317 (2008).

    Article  ADS  Google Scholar 

  84. 84

    Boixo, S. et al. Quantum metrology: Dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008).

    Article  ADS  Google Scholar 

  85. 85

    Woolley, M. J., Milburn, G. J. & Caves, C. M. Nonlinear quantum metrology using coupled nanomechanical resonators. New J. Phys. 10, 125018 (2008).

    Article  ADS  Google Scholar 

  86. 86

    Roy, S. M. & Braunstein, S. L. Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100, 220501 (2008).

    Article  ADS  Google Scholar 

  87. 87

    Chase, B. A., Baragiola, B. Q., Partner, H. L., Black, B. D. & Geremia, J. M. Magnetometry via a double-pass continuous quantum measurement of atomic spin. Phys. Rev. A 79, 062107 (2009).

    Article  ADS  Google Scholar 

  88. 88

    Choi, S. & Sundaram, B. Bose–Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit. Phys. Rev. A 77, 053613 (2008).

    Article  ADS  Google Scholar 

  89. 89

    Maldonado-Mundo, D. & Luis, A. Metrological resolution and minimum uncertainty states in linear and nonlinear signal detection schemes. Phys. Rev. A 80, 063811 (2009).

    Article  ADS  Google Scholar 

  90. 90

    Rey, A. M., Jiang, L. & Lukin, M. D. Quantum-limited measurements of atomic scattering properties. Phys. Rev. A 76, 053617 (2007).

    Article  ADS  Google Scholar 

  91. 91

    Tilma, T., Hamaji, S., Munro, W. J. & Nemoto, K. Entanglement is not a critical resource for quantum metrology. Phys. Rev. A 81, 022108 (2010).

    Article  ADS  Google Scholar 

  92. 92

    Rivas, A. & Luis, A. Intrinsic metrological resolution as a distance measure and nonclassical light. Phys. Rev. A 77, 063813 (2008).

    Article  ADS  Google Scholar 

  93. 93

    Rivas, A. & Luis, A. Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010).

    Article  ADS  Google Scholar 

  94. 94

    Napolitano, M. & Mitchell, M. W. Non-linear metrology with a quantum interface. New J. Phys. 12, 093016 (2010).

    Article  ADS  Google Scholar 

  95. 95

    Napolitano, M. et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Preprint at http://arxiv.org/abs/1012.5787 (2010).

  96. 96

    Shabaniand, A. & Jacobs, K. Locally optimal control of quantum systems with strong feedback. Phys. Rev. Lett. 101, 230403 (2008).

    Article  ADS  Google Scholar 

  97. 97

    Zwierz, M., Pérez-Delgado, C. A. & Kok, P. General optimality of the Heisenberg limit for quantum metrology. Phys. Rev. Lett. 105, 180402 (2010).

    Article  ADS  Google Scholar 

  98. 98

    Gilbert, G., Hamrick, M. & Weinstein, Y. S. Use of maximally entangled N-photon states for practical quantum interferometry. J. Opt. Soc. Am. B 25, 1336–1340 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  99. 99

    Rubin, M. A. & Kaushik, S. Loss-induced limits to phase measurement precision with maximally entangled states. Phys. Rev. A 75, 053805 (2007).

    Article  ADS  Google Scholar 

  100. 100

    Banaszek, K., Demkowicz-Dobrzanski, R. & Walmsley, I. A. Quantum states made to measure. Nature Photon. 3, 673–676 (2009).

    Article  ADS  Google Scholar 

  101. 101

    Kolodynski, J. & Demkowicz-Dobrzanski, R. Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82, 053804 (2010).

    Article  ADS  Google Scholar 

  102. 102

    Knysh, S., Smelyanskiy, V. N. & Durkin, G. A. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83, 021804(R) (2011).

    Article  ADS  Google Scholar 

  103. 103

    Huver, S. D., Wildfeuer, C. F. & Dowling, J. P. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008).

    Article  ADS  Google Scholar 

  104. 104

    Dorner, U. et al. Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009).

    Article  ADS  Google Scholar 

  105. 105

    Demkowicz-Dobrzanski, R. et al. Quantum phase estimation with lossy interferometers. Phys. Rev. A 80, 013825 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  106. 106

    Lee, T. W. et al. Optimization of quantum interferometric metrological sensors in the presence of photon loss. Phys. Rev. A 80, 063803 (2009).

    Article  ADS  Google Scholar 

  107. 107

    Vitelli, C., Spagnolo, N., Toffoli, L., Sciarrino, F. & De Martini, F. Enhanced resolution of lossy interferometry by coherent amplification of single photons. Phys. Rev. Lett. 105, 113602 (2010).

    Article  ADS  Google Scholar 

  108. 108

    Genoni, M. G., Olivares, S. & Paris, M. G. A. Phase estimation in the presence of phase-diffusion. Preprint at http://arxiv.org/abs/1012.1123 (2010).

  109. 109

    Aspachs, M., Calsamiglia, J., Munoz-Tapia, R. & Bagan, E. Phase estimation for thermal Gaussian states. Phys. Rev. A 79, 033834 (2009).

    Article  ADS  Google Scholar 

  110. 110

    Maccone, L. & De Cillis, G. Robust strategies for lossy quantum interferometry. Phys. Rev. A 79, 023812 (2009).

    Article  ADS  Google Scholar 

  111. 111

    Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).

    Article  ADS  Google Scholar 

  112. 112

    Auzinsh, M. et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).

    Article  ADS  Google Scholar 

  113. 113

    Ulam-Orgikh, D. & Kitagawa, M. Spin squeezing and decoherence limit in Ramsey spectroscopy. Phys. Rev. A 64, 052106 (2001).

    Article  ADS  Google Scholar 

  114. 114

    Wineland, D. J., Monroe, C., Itano, W. M., Leibfried, D. & King, B. E. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Techol. 103, 259–328 (1998).

    Article  MATH  Google Scholar 

  115. 115

    André, A., Sorensen, A. S. & Lukin, M. D. Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92, 230801 (2004).

    Article  ADS  Google Scholar 

  116. 116

    Shaji, A. & Caves, C. M. Qubit metrology and decoherence. Phys. Rev. A 76, 032111 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vittorio Giovannetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon 5, 222–229 (2011). https://doi.org/10.1038/nphoton.2011.35

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing