Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-chip optical isolation in monolithically integrated non-reciprocal optical resonators

Abstract

Non-reciprocal photonic devices, including optical isolators and circulators, are indispensible components in optical communication systems. However, the integration of such devices on semiconductor platforms has been challenging because of material incompatibilities between semiconductors and magneto-optical materials that necessitate wafer bonding, and because of the large footprint of isolator designs. Here, we report the first monolithically integrated magneto-optical isolator on silicon. Using a non-reciprocal optical resonator on an silicon-on-insulator substrate, we demonstrate unidirectional optical transmission with an isolation ratio up to 19.5 dB near the 1,550 nm telecommunication wavelength in a homogeneous external magnetic field. Our device has a small footprint that is 290 µm in length, significantly smaller than a conventional integrated optical isolator on a single crystal garnet substrate. This monolithically integrated non-reciprocal optical resonator may serve as a fundamental building block in a variety of ultracompact silicon photonic devices including optical isolators and circulators, enabling future low-cost, large-scale integration.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure and operation principle of the monolithic non-reciprocal optical-resonator-based isolator.
Figure 2: Optical isolation performance of the isolator.
Figure 3: Simulated device performance as a function of SOI waveguide height.
Figure 4: Dispersion relations of the resonance peak shift and FSR of the optical isolator.

References

  1. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009).

    ADS  Article  Google Scholar 

  2. Dötsch, H. et al. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22, 240–253 (2005).

    ADS  Article  Google Scholar 

  3. Sung, S., Qi, X. & Stadler B. J. H. Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability. Appl. Phys. Lett. 87, 121111 (2005).

    ADS  Article  Google Scholar 

  4. Boudiar, T. et al. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering. J. Magn. Magn. Mater. 284, 77–85 (2004).

    ADS  Article  Google Scholar 

  5. Shintaku, T. Integrated optical isolator based on efficient nonreciprocal radiation mode conversion. Appl. Phys. Lett. 73, 1946–1948 (1998).

    ADS  Article  Google Scholar 

  6. Fujita, J., Levy, M., Osgood, R. M. Jr, Wilkens, L. & Dötsch, H. Waveguide optical isolator based on Mach–Zehnder interferometer. Appl. Phys. Lett. 76, 2158–2160 (2000).

    ADS  Article  Google Scholar 

  7. Kim, H. S., Bi, L., Dionne, G. F. & Ross, C. A. Magnetic and magneto-optical properties of Fe-doped SrTiO3 films. Appl. Phys. Lett. 93, 092506 (2008).

    ADS  Article  Google Scholar 

  8. Bi, L., Kim, H. S., Dionne, G. F. & Ross, C. A. Structure, magnetic properties and magnetoelastic anisotropy in epitaxial Sr(Ti1–xCox)O3 films. New J. Phys. 12, 043044 (2010).

    ADS  Article  Google Scholar 

  9. Zaman, T. R., Guo, X. & Ram, R. J. Semiconductor waveguide isolators. J. Lightwave Technol. 26, 291–301 (2008).

    ADS  Article  Google Scholar 

  10. Wang, Z. & Fan, S. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett. 30, 1989–1991 (2005).

    ADS  Article  Google Scholar 

  11. Kono, N., Kakihara, K., Saitoh, K. & Koshiba, M. Nonreciprocal microresonators for the miniaturization of optical waveguide isolators. Opt. Express 15, 7737–7751 (2007).

    ADS  Article  Google Scholar 

  12. Jalas, D., Petrov, A., Krause, M., Hampe, J. & Eich, M. Resonance splitting in gyrotropic ring resonators. Opt. Lett. 35, 3438–3440 (2010).

    ADS  Article  Google Scholar 

  13. Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I. & Osgood, R. M. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

    ADS  Article  Google Scholar 

  14. Tien, M., Mizumoto, T., Pintus, P., Kromer, H. & Bowers, J. E. Silicon ring isolators with bonded nonreciprocal magneto-optical garnets. Opt. Express 19, 11740–11745 (2011)

    ADS  Article  Google Scholar 

  15. Bi, L. Magneto-Optical Oxide Thin Films and Integrated Nonreciprocal Photonic Devices. PhD thesis, Massachusetts Institute of Technology (2011).

    Google Scholar 

  16. Bi, L., Hu, J., Dionne, G. F., Kimerling, L. & Ross, C. A. Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices. Proc. SPIE 7941, 794105 (2011).

    Article  Google Scholar 

  17. Espinola, R. L., Izuhara, T., Tsai, M., Osgood, R. M. & Dötsch, H. Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides. Opt. Lett. 29, 941–943 (2004).

    ADS  Article  Google Scholar 

  18. Duan, G. H., Favre, H. & Le Guen, D. FM noise and linewidth reduction in a 1.5 µm InGaAsP DFB laser coupled to an external fiber resonator. Opt. Commun. 15, 111–114 (1988).

    ADS  Article  Google Scholar 

  19. Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).

    ADS  Article  Google Scholar 

  20. Hu, J. Planar Chalcogenide Glass Materials and Devices. PhD thesis, Massachusetts Institute of Technology (2009).

    Google Scholar 

  21. Integrated Optics Software FIMMWAVE 4.5, Photon Design, Oxford, UK; available at http://www.photond.com

  22. Higuchi, S., Furukawa, Y., Tekekawa, S., Kamada, O. & Kitamura K. Magneto-optical properties of cerium-substituted yttrium iron garnet single crystals grown by traveling solvent floating zone method. Jpn J. Appl. Phys. 38, 4122–4126 (1999).

    ADS  Article  Google Scholar 

  23. Gomi, M., Furuyama, H. & Abe, M. Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering. J. Appl. Phys. 70, 7065–7067 (1991).

    ADS  Article  Google Scholar 

  24. Holzwarth, C. W., Barwicz, T. & Smith, H. I. Optimization of hydrogen silsesquioxane for photonic applications. J. Vac. Sci. Technol. B 25, 2658–2661 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jie Sun for discussions on silicon resonator fabrication. The support of the National Science Foundation and an Intel Fellowship for Lei Bi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

L.B. conducted the theoretical simulation, material fabrication, device fabrication and testing. J.H. conceived the device and contributed to theoretical simulation and device testing. P.J. and D.H.K. contributed to material fabrication. G.F.D., L.C.K. and C.A.R. supervised and coordinated the project. All authors contributed to writing the paper.

Corresponding authors

Correspondence to Lei Bi or C. A. Ross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 852 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bi, L., Hu, J., Jiang, P. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photon 5, 758–762 (2011). https://doi.org/10.1038/nphoton.2011.270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.270

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing