Optical pulling force

Subjects

Abstract

A photon carries k of momentum, so it may be anticipated that light will ‘push’ on any object standing in its path by means of the scattering force1,2,3. In the absence of an intensity gradient, using a light beam to pull a particle backwards is counter-intuitive. Here, we show that it is possible to realize a backward scattering force that pulls a particle all the way towards the source without an equilibrium point. The underlining physics is the maximization of forward scattering via interference of the radiation multipoles. We show explicitly that the necessary condition to realize a negative (pulling) optical force is the simultaneous excitation of multipoles in the particle, and if the projection of the total photon momentum along the propagation direction is small, an attractive optical force is possible. This possibility adds ‘pulling’ as an additional degree of freedom to optical micromanipulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Existence of a backward scattering force on a polystyrene sphere illuminated by a Bessel beam.
Figure 2: Polar plot for normalized scattered irradiance showing the angular dependence of scattered light.
Figure 3: Existence of OPF for particles composed of different material.

References

  1. 1

    Arlt, J., Garces-Chavez, V., Sibbett, W. & Dholakia, K. Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001).

    ADS  Article  Google Scholar 

  2. 2

    Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nature Photon. 2, 675–678 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Swartzlander, G. A. Jr, Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nature Photon. 5, 48–51 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    ADS  Article  Google Scholar 

  5. 5

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Article  Google Scholar 

  6. 6

    Righini, M., Zelenina, A. S., Girard, C. & Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 3, 477–480 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 675–678 (2008).

    Article  Google Scholar 

  8. 8

    Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R., Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  Google Scholar 

  10. 10

    Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).

    Google Scholar 

  11. 11

    Novitsky, A. V. & Novitsky, D. V. Negative propagation of vector Bessel beams. J. Opt. Soc. Am. A 24, 2844–2849 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Shvedov, V. G. et al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    ADS  Article  Google Scholar 

  14. 14

    Bouchal, Z. & Olivik, M. Non-diffractive vector Bessel beams. J. Mod. Opt. 42, 1555–1566 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Garces-Chavez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

    ADS  Article  Google Scholar 

  16. 16

    McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Cizmar, T., Kollarova, V., Bouchal, Z. & Zemanek, P. Sub-micron particle organization by self-imaging of non-diffracting beams. New J. Phys. 8, 43 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Marston, P. L. Scattering of a Bessel beam by a sphere. J. Acoust. Soc. Am. 121, 753–758 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Karasek, V., Cizmar, T., Brzobohaty, O. & Zemanek, P. Long-range one-dimensional longitudinal optical binding. Phys. Rev. Lett. 101, 143601 (2008).

    ADS  Article  Google Scholar 

  20. 20

    Turunen, J. & Friberg, A. T. Progress in Optics Ch. 1 (Elsevier, 2009).

    Google Scholar 

  21. 21

    Mazilu, M., Stevenson, D. J., Moore, F. G. & Dholakia, K. Light beats the spread: ‘non-diffracting’ beams. Laser Photon. Rev. 4, 529–547 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

    Google Scholar 

  23. 23

    Dholakia, K. & Zemanek, P. Colloquium: Gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Ng, J., Lin, Z. F., Chan, C. T. & Sheng, P. Photonic clusters formed by dielectric microspheres: Numerical simulations. Phys. Rev. B 72, 085130 (2005).

    ADS  Article  Google Scholar 

  25. 25

    Radescu, E. E. & Vaman, G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E 65, 046609 (2002).

    ADS  Article  Google Scholar 

  26. 26

    Barnett, S. M. & Loudon, R. On the electromagnetic force on a dielectric medium. J. Phys. B 39, 671–684 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Nieto-Vesperinas, M., Saenz, J. J., Gómez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Chaumet, P. C. & Rahmani, A. Electromagnetic force and torque on magnetic and negative index scatterers. Opt. Express 17, 2224–2234 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Kerker, M., Wang, D. S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

    ADS  Article  Google Scholar 

  30. 30

    Nieto-Vesperinas, M., Gomez-Medina, R. & Saenz, J. J. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A 28, 54–60 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Hong Kong's Research Grants Council (GRF grant no. 600308), from the National Natural Science Foundation of China (NSFC) (10774028) and the Chinese Ministry of Education (B06011). Computational resources were supported by the Shun Hing Education and Charity Fund.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this paper. J.C. discovered OPF and was responsible for the numerical simulations. J.N. was responsible for the physical interpretation and assisted in the mathematical derivation. Z.F.L. initiated the project and was responsible for most of the mathematical derivation and computer code development. C.T.C. oversaw and directed the whole project.

Corresponding author

Correspondence to Jack Ng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 614 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, J., Ng, J., Lin, Z. et al. Optical pulling force. Nature Photon 5, 531–534 (2011). https://doi.org/10.1038/nphoton.2011.153

Download citation

Further reading