Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sub-femtojoule all-optical switching using a photonic-crystal nanocavity

Abstract

Although high-speed all-optical switches are expected to replace their electrical counterparts in information processing, their relatively large size and power consumption have remained obstacles. We use a combination of an ultrasmall photonic-crystal nanocavity and strong carrier-induced nonlinearity in InGaAsP to successfully demonstrate low-energy switching within a few tens of picoseconds. Switching energies with a contrast of 3 and 10 dB of 0.42 and 0.66 fJ, respectively, have been obtained, which are over two orders of magnitude lower than those of previously reported all-optical switches. The ultrasmall cavity substantially enhances the nonlinearity as well as the recovery speed, and the switching efficiency is maximized by a combination of two-photon absorption and linear absorption in the InGaAsP nanocavities. These switches, with their chip-scale integratability, may lead to the possibility of low-power, high-density, all-optical processing in a chip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photonic-crystal H0 nanocavity.
Figure 2: Carrier decay simulation results.
Figure 3: Material optimization for minimizing switching energy.
Figure 4: Switching dynamics of a photonic-crystal nanocavity acquired by pump–probe measurements.
Figure 5: Pulse extraction and removal from a signal train at 40 Gbps.

Similar content being viewed by others

References

  1. Tucker, R. S. A green internet. 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 4–5 (2008).

  2. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  ADS  Google Scholar 

  3. Gopal, A. V. et al. Intersubband absorption saturation in InGaAs–AlAsSb quantum wells. IEEE J. Quantum Electron. 38, 1515–1520 (2002).

    Article  ADS  Google Scholar 

  4. Cong, G. W., Akimoto, R., Akita, K., Hasama, T. & Ishikawa, H. Low-saturation-energy-driven ultrafast all-optical switching operation in (CdS/ZnSe)/BeTe intersubband transition. Opt. Express 15, 12123–12130 (2007).

    Article  ADS  Google Scholar 

  5. Nakamura, S., Ueno, Y. & Tajima, K. Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach–Zehnder-type all-optical switch. Appl. Phys. Lett. 78, 3929–3931 (2001).

    Article  ADS  Google Scholar 

  6. Neilsen, M. L., Mørk, J., Suzuki, R., Sakaguchi, J. & Ueno, Y. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high speed SOA-based all-optical switches. Opt. Express 14, 331–347 (2006).

    Article  ADS  Google Scholar 

  7. Yamamoto, T., Yoshida, E. & Nakazawa, M. Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals. Electron. Lett. 34, 1013–1014 (1998).

    Article  Google Scholar 

  8. Lee, J. H., Tanemura, T., Takushima, Y. & Kikuchi, K. All-optical 80-Gb/s add–drop multiplexer using fiber-based nonlinear optical loop mirror. IEEE Photon. Technol. Lett. 17, 840–842 (2005).

    Article  ADS  Google Scholar 

  9. Andrekson, P. A., Sunnerud, H., Oda, S., Nishitani, T. & Yang, J. Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation. Opt. Express 16, 10956–10961 (2008).

    Article  ADS  Google Scholar 

  10. Miller, D. A. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  11. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H. Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

    Article  ADS  Google Scholar 

  12. Ryu, H. Y., Notomi, M., Kim, G. H. & Lee, Y. H. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity. Opt. Express 12, 1708–1719 (2004).

    Article  ADS  Google Scholar 

  13. Kuramochi, E. et al. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006).

    Article  ADS  Google Scholar 

  14. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).

    Article  ADS  Google Scholar 

  15. Takahashi, Y. et al. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 15, 17206–17213 (2007).

    Article  ADS  Google Scholar 

  16. Soljacic, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  17. Notomi, M. et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005).

    Article  ADS  Google Scholar 

  18. Tanabe, T., Notomi, M., Shinya, A., Mitsugi, S. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 151112 (2005).

    Article  ADS  Google Scholar 

  19. Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).

    Article  ADS  Google Scholar 

  20. Husko, C. et al. Ultrafast all-optical modulation in GaAs photonic crystal cavities Appl. Phys. Lett. 94, 021111 (2009).

    Article  ADS  Google Scholar 

  21. Nakamura, H. et al. Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express 12, 6606–6614 (2004).

    Article  ADS  Google Scholar 

  22. Zhang, Z. & Qiu, M. Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express 12, 3988–3995 (2004).

    Article  ADS  Google Scholar 

  23. Nozaki, K., Kita, S. & Baba, T. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007).

    Article  ADS  Google Scholar 

  24. Lan, S., Gopal, A. V., Kanamoto, K. & Ishikawa H. Ultrafast response of photonic crystal atoms with Kerr nonlinearity to ultrashort optical pulses. Appl. Phys. Lett. 84, 5124–5126 (2004).

    Article  ADS  Google Scholar 

  25. Koos, C. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photon. 3, 216–219 (2009).

    Article  ADS  Google Scholar 

  26. Bennett, B. R., Soref, R. A. & Del Alamo, J. A. Carrier-induced change in refractive GaAs, and InGaAsP index of InP. IEEE J. Quantum Electron. 26, 113–122 (1990).

    Article  ADS  Google Scholar 

  27. Mondia, J. P., Tan, H. W., Linden, S., Driel, H. M. & Young, J. F. Ultrafast tuning of two-dimensional planar photonic-crystal waveguides via free-carrier injection and the optical Kerr effect. J. Opt. Soc. Am. B 22, 2480–2486 (2005).

    Article  ADS  Google Scholar 

  28. Barclay, P. E., Srinivasan, K. & Painter, O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt. Express 13, 801–820 (2005).

    Article  ADS  Google Scholar 

  29. Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).

    Article  ADS  Google Scholar 

  30. Van, V. et al. All-optical nonlinear switching in GaAs–AlGaAs microring resonators. IEEE Photon. Technol. Lett. 14, 74–76 (2002).

    Article  ADS  Google Scholar 

  31. Tsang, H. K. et al. Two-photon absorption and self-phase modulation in InGaAsP/lnP multi-quantum-well waveguides. J. Appl. Phys. 70, 3992–3994 (1991).

    Article  ADS  Google Scholar 

  32. Mørk, J., Mark, J. & Seltzer, C. P. Carrier heating in InGaAsP laser amplifiers due to two-photon absorption. Appl. Phys. Lett. 64, 2206–2208 (1994).

    Article  ADS  Google Scholar 

  33. Adachi, S. Physical Properties of iii–vSemiconductor Compounds, InP, InAs, GaAs, GaP, InGaAs and InGaAsP Ch 8 (Wiley, 1992).

  34. Tanabe, T., Taniyama, H. & Notomi, M. Carrier diffusion and recombination in photonic crystal nanocavity optical switches. IEEE J. Lightwave Technol. 26, 1396–1403 (2008).

    Article  ADS  Google Scholar 

  35. Szymanski, D. M. et al. Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers. Appl. Phys. Lett. 95, 141108 (2009).

    Article  ADS  Google Scholar 

  36. Tran, Q. V., Combrié, S., Colman, P. & De Rossi, A. Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett. 95, 061105 (2009).

    Article  ADS  Google Scholar 

  37. Fan, S. Sharp asymmetric line shapes in side-coupled waveguide–cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).

    Article  ADS  Google Scholar 

  38. Yang, X., Husco, C., Wong, C. W., Yu, M. & Kwong, D. L. Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities. Appl. Phys. Lett. 91, 051113 (2007).

    Article  ADS  Google Scholar 

  39. Manolatou, C. et al. Coupling of modes analysis of resonant channel add–drop filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999).

    Article  ADS  Google Scholar 

  40. Kim, G. H., Lee, Y. H., Shinya, A. & Notomi, M. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode. Opt. Express 12, 6624–6631 (2005).

    Article  ADS  Google Scholar 

  41. Shinya, A. et al. All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal. Opt. Express 16, 19382–19387 (2008).

    Article  ADS  Google Scholar 

  42. Waldow. M. et al. 25 ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Opt. Express 16, 7693–7702 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Yokoo, E. Kuramochi, H. Sumikura and Y.G. Roh for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.N. performed the experiment, analysed the data and wrote the manuscript. T.T. and A.S. supported the measurement set-up and the discussion. S.M. and T.S. fabricated the sample. H.T. supported the FDTD calculation. M.N. supported the numerical calculation, partly wrote the manuscript and led the project.

Corresponding authors

Correspondence to Kengo Nozaki or Masaya Notomi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozaki, K., Tanabe, T., Shinya, A. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photon 4, 477–483 (2010). https://doi.org/10.1038/nphoton.2010.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing