Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scale-free optics and diffractionless waves in nanodisordered ferroelectrics

Abstract

Wavelength rigidly fixes the diffraction that distorts waves during propagation, and poses fundamental limits to imaging, microscopy and communication. This distortion can be avoided by using waveguides or nonlinearity to produce solitons. In both cases, however, diffraction is only compensated, so the wavelength still imposes rigid laws on wave shape, size and soliton intensity1,2,3,4,5,6,7,8,9,10,11,12,13,14. Nonlinearity, in turn, can introduce new spatial scales. In principle, if one is able to identify a nonlinearity that introduces an intensity-independent scale that cancels the wavelength, ‘scale-free’ propagation can occur. In this regime, diffraction ceases, and waveforms will naturally propagate without distortion, forming solitons of any size and intensity, even arbitrarily low. Here we provide the first experimental evidence of scale-free optical propagation in supercooled copper-doped KTN:Li, a recently developed out-of-equilibrium ferroelectric15,16,17. This demonstrates that diffraction can be cancelled, and not merely compensated, thus leading to a completely new paradigm for ultraresolved imaging and microscopy.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scale-free beam propagation at different cooling rates.
Figure 2: Interaction and generation of scale-free beams under rapid cooling.
Figure 3: Training the scale-free behaviour to have polarization selectivity.

References

  1. Drazin, P. G. & Johnson, R. S. Solitons: An Introduction (Cambridge Univ. Press, 1989).

    Book  Google Scholar 

  2. Kivshar, Y. S. & Agrawal, G. P. Optical Solitons (Academic Press, 2003).

    Google Scholar 

  3. Segev, M., Crosignani, B., Yariv, A. & Fischer, B. Spatial solitons in photorefractive media. Phys. Rev. Lett. 68, 923–926 (1992).

    ADS  Article  Google Scholar 

  4. Segev, M. & Stegeman, G. I. Self-trapping of optical beams: spatial solitons. Phys. Today 51, 43–48 (1998).

    Article  Google Scholar 

  5. DelRe, E. & Segev, M. Self-focusing and solitons in photorefractive media, in Topics in Applied Physics, Vol. 114 547–572 (Springer, 2009).

    Google Scholar 

  6. DelRe, E., Tamburrini, M., Segev, M., Della Pergola, R. & Agranat, A. J. Spontaneous self-trapping of optical beams in metastable paraelectric crystals. Phys. Rev. Lett. 83, 1954–1957 (1999).

    ADS  Article  Google Scholar 

  7. Ultanir, E. A., Michaelis, D., Lederer, F. & Stegeman, G. I. Stable spatial solitons in semiconductor optical amplifiers. Opt. Lett. 28, 251–253 (2003).

    ADS  Article  Google Scholar 

  8. Torruellas, W. E. et al. Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett. 74, 5036–5039 (1995).

    ADS  Article  Google Scholar 

  9. Reece, P. J., Wright, E. M. & Dholakia, K. Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter. Phys. Rev. Lett. 98, 203902 (2007).

    ADS  Article  Google Scholar 

  10. Conti, C., Peccianti, M. & Assanto, G. Observation of optical spatial solitons in a highly nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004).

    ADS  Article  Google Scholar 

  11. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    ADS  Article  Google Scholar 

  12. Conti, C., Ruocco, G. & Trillo, S. Optical spatial solitons in soft matter. Phys. Rev. Lett. 95, 183902 (2005).

    ADS  Article  Google Scholar 

  13. Trillo, S. & Torruealls, W. (eds) Spatial Solitons (Springer-Verlag, 2001).

    Book  Google Scholar 

  14. Boardman, A. D. & Sukhorukov, A. P. (eds) Soliton Driven Photonics (Kluwer Academic, 2001).

    Book  Google Scholar 

  15. Bokov, A. A. & Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

    ADS  Article  Google Scholar 

  16. Ishai, P. B., de Oliveira, C. E. M., Ryabov, Y., Feldman, Y. & Agranat, A. J. Glass-forming liquid kinetics manifested in a KTN:Cu crystal. Phys. Rev. B 70, 132104 (2004).

    ADS  Article  Google Scholar 

  17. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    ADS  Article  Google Scholar 

  18. Pirc, R., Blinc, R. & Vikhnin, V. S. Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics. Phys. Rev. B 69, 212105 (2004).

    ADS  Article  Google Scholar 

  19. Whitham, G. B. Linear and Nonlinear Waves (Wiley, 1999).

    Book  Google Scholar 

  20. Englander, S. W., Kallenbach, N. R., Heeger, A. J., Krumhansl, J. A. & Litwin, S. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. USA 77, 7222–7226 (1980).

    ADS  Article  Google Scholar 

  21. Hasegawa, A. & Matsumoto, M. Optical Solitons in Fibers 3rd edn (Springer, 2002).

    Google Scholar 

  22. Agrawal, G. P. Nonlinear Fiber Optics 4th edn (Academic Press, 2006).

    MATH  Google Scholar 

  23. Ghofraniha, N., Conti, C., Ruocco, G. & Zamponi, F. Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material. Phys. Rev. Lett. 102, 038303 (2009).

    ADS  Article  Google Scholar 

  24. Agranat, A., Hofmeister, R. & Yariv, A. Characterization of a new photorefractive material: K1−yLiyT1−xNx . Opt. Lett. 17, 713–715 (1992).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results was supported by funding from the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement no. 201766, and from the Italian Ministry of Research (MIUR) through the ‘Futuro in Ricerca’ FIRB grant PHOCOS-RBFR08E7VA. Partial funding was received through the SMARTCONFOCAL project of the Regione Lazio. A.J.A. acknowledges the support of the Peter Brojde Center for Innovative Engineering.

Author information

Authors and Affiliations

Authors

Contributions

E.D. and C.C. conceived and developed the experiments and theory. R.A. designed and fabricated the KTN:Li samples and participated in the analysis and interpretation of results. E.S. participated in the experiments and data analysis.

Corresponding author

Correspondence to E. DelRe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DelRe, E., Spinozzi, E., Agranat, A. et al. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nature Photon 5, 39–42 (2011). https://doi.org/10.1038/nphoton.2010.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.285

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing