Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On-chip beam-steering photonic-crystal lasers

Abstract

The development of semiconductor lasers with on-chip controllability of the beam direction is important for a wide range of applications, including mobile laser projection displays1, advanced laser printers2 and chip-to-chip optical communication3. Here, we report a novel concept to realize such beam-steering lasers using photonic crystals. Our idea is based on the generation of artificial lasing band edges in the photonic band structure, which determine the resonant condition and output beam direction4,5,6,7,8,9,10,11,12. We show that the lasing band edge can be tuned by using a composite photonic-crystal structure composed of both square and rectangular lattices, and by varying their relative lattice constants. We demonstrate that lasers based on such composite photonic-crystal structures are able to emit beams in a range of directions that can be dynamically controlled by on-chip integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations and photonic band structures of a composite photonic crystal composed of square and rectangular lattice structures.
Figure 2: Fabricated composite photonic crystal and device structure.
Figure 3: Measured photonic band structures.
Figure 4: Beam-steering functionality and lasing characteristics.

Similar content being viewed by others

References

  1. Niven, G. & Mooradian, A. Trends in laser light sources for projection display. Proceedings of the 13th International Display Workshops LAD2-2, Otsu, Japan, 6–8 December 2006.

  2. Matsuda, T., Abe, F. & Takahashi, H. Laser printer scanning system with a parabolic mirror. Appl. Opt. 17, 878–884 (1978).

    Article  ADS  Google Scholar 

  3. Wu, M. C., Solgaard, O. & Ford, J. E. Optical MEMS for lightwave communication. J. Lightwave Technol. 24, 4433–4454 (2006).

    Article  ADS  Google Scholar 

  4. Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 75, 316–318 (1999).

    Article  ADS  Google Scholar 

  5. Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    Article  ADS  Google Scholar 

  6. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure. Science 293, 1123–1125 (2001).

    Article  ADS  Google Scholar 

  7. Imada, M., Chutinan, A., Noda, S. & Mochizuki, M. Multidirectionally distributed feedback photonic crystal lasers. Phys. Rev. B 65, 195306 (2002).

    Article  ADS  Google Scholar 

  8. Turnbull, G. A., Andrew, P., Barnes, W. L. & Samuel, I. D. W. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl. Phys. Lett. 82, 313–315 (2003).

    Article  ADS  Google Scholar 

  9. Ohnishi, D., Okano, T., Imada, M. & Noda, S. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. Opt. Express 12, 1562–1568 (2004).

    Article  ADS  Google Scholar 

  10. Kim, M. et al. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared. Appl. Phys. Lett. 88, 191105 (2006).

    Article  ADS  Google Scholar 

  11. Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 319, 445–447 (2008).

    Article  ADS  Google Scholar 

  12. Lu, T. C., Chen, S. W., Kao, T. T. & Liu, T. W. Characteristics of GaN-based photonic crystal surface emitting lasers. Appl. Phys. Lett. 93, 111111 (2008).

    Article  ADS  Google Scholar 

  13. Scifres, D. R., Streifer, W. & Burnham, R. D. Beam scanning with twin-stripe injection lasers. Appl. Phys. Lett. 33, 702–704 (1978).

    Article  ADS  Google Scholar 

  14. Mukai, S. et al. Beam scanning and switching characteristics of twin-striped lasers with a reduced stripe spacing. Opt. Quantum Electron. 17, 431–434 (1985).

    Article  Google Scholar 

  15. Ide, T. et al. Continuous output beam steering in vertical-cavity surface-emitting lasers with two p-type electrodes by controlling injection current profile. Jpn J. Appl. Phys. 38, 1966–1970 (1999).

    Article  ADS  Google Scholar 

  16. Letartre, X., Monat, C., Seassal, C. & Viktorovitch, P. Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures. J. Opt. Soc. Am. B 22, 2581–2595 (2005).

    Article  ADS  Google Scholar 

  17. Zhu, L., Sun, X., DeRose, G. A., Scherer, A. & Yariv, A. Spatial modal control of two-dimensional photonic crystal Bragg lasers. Opt. Lett. 32, 2273–2275 (2007).

    Article  ADS  Google Scholar 

  18. Vurgaftman, I. & Meyer, J. R. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers. IEEE J. Quantum Electron. 39, 689–700 (2003).

    Article  ADS  Google Scholar 

  19. Sakai, K., Miyai, E. & Noda, S. Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode. Appl. Phys. Lett. 89, 021101 (2006).

    Article  ADS  Google Scholar 

  20. Miyai, E. et al. Lasers producing tailored beams. Nature 441, 946 (2006).

    Article  ADS  Google Scholar 

  21. Sakai, K. et al. Lasing band-edge identification for a surface-emitting photonic crystal laser. IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).

    Article  Google Scholar 

  22. Jung, H. G., Cho, Y. H., Yoon, P. J. & Kim, J. Scanning laser radar-based target position designation for parking aid system. IEEE Trans. Intell. Transp. Syst. 9, 406–424 (2008).

    Article  Google Scholar 

  23. Barkin, J. S. & Friedman, S. Wireless capsule endoscopy requiring surgical intervention: the world's experience. Am. J. Gastroenterol. 97, S298 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid and the Global Center of Excellence (G-COE) programme of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.N. supervised the project. S.N. and Y.K. conceived and designed the experiments. Y.K., S.I. and Y.L., together with W.K. and D.O., performed the experiments. S.N.,Y.K., S.I., Y.L., K.S. and E.M. analysed the data. S.N. and Y.K. wrote the paper with K.S. and E.M.

Corresponding author

Correspondence to Susumu Noda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurosaka, Y., Iwahashi, S., Liang, Y. et al. On-chip beam-steering photonic-crystal lasers. Nature Photon 4, 447–450 (2010). https://doi.org/10.1038/nphoton.2010.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing