Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A metamaterial solid-state terahertz phase modulator

Abstract

Over the past two decades, terahertz time-domain spectroscopy1 and quantum-cascade lasers2 have been two of the most important developments in terahertz science and technology. These technologies may contribute to a multitude of terahertz applications that are currently under investigation globally3. However, the devices and components necessary to effectively manipulate terahertz radiation require substantial development beyond what has been accomplished to date. Here we demonstrate an electrically controlled planar hybrid metamaterial device that linearly controls the phase of terahertz radiation with constant insertion loss over a narrow frequency band. Alternatively, our device may operate as a broadband terahertz modulator because of the causal relation between the amplitude modulation and phase shifting. We perform terahertz time-domain spectroscopy, in which our hybrid metamaterial modulator replaces a commercial mechanical optical chopper, demonstrating comparable broadband performance and superior high-speed operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the electrically driven terahertz metamaterial phase shifter.
Figure 2: Electrically controllable terahertz transmission spectra.
Figure 3: Broadband modulation of terahertz radiation.
Figure 4: Terahertz time-domain spectroscopy using the broadband metamaterial modulator.

Similar content being viewed by others

References

  1. Grischkowsky, D., Keiding, S., van Exter, M. & Fattinger, Ch. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990).

    Article  ADS  Google Scholar 

  2. Köhler, R. et al. Terahertz semiconductor-heterostructure lasers. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  3. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  4. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  5. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  6. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  7. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  8. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  9. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  ADS  Google Scholar 

  11. Azad, A. K., Dai, J. & Zhang, W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett. 31, 634–636 (2006).

    Article  ADS  Google Scholar 

  12. Chen, H.-T. et al. Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007).

    Article  ADS  Google Scholar 

  13. Chen, H.-T. et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photon. 2, 295–298 (2008).

    Article  Google Scholar 

  14. Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, M. & Averitt, R. D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006).

    Article  ADS  Google Scholar 

  15. Chen, H.-T. et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt. Lett. 32, 1620–1622 (2007).

    Article  ADS  Google Scholar 

  16. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    Article  ADS  Google Scholar 

  17. Tao, H. et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008).

    Article  ADS  Google Scholar 

  18. Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  19. Chen, H.-T. et al. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Appl. Phys. Lett. 93, 091117 (2008).

    Article  ADS  Google Scholar 

  20. Libon, I. H. et al. An optically controllable terahertz filter. Appl. Phys. Lett. 76, 2821–2823 (2000).

    Article  ADS  Google Scholar 

  21. Kersting, R., Strasser, G. & Unterrainer, K. Terahertz phase modulator. Electron. Lett. 36, 1156–1158 (2000).

    Article  Google Scholar 

  22. Hsieh, C.-F., Pan, R.-P., Tang, T.-T., Chen, H.-L. & Pan, C.-L. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. Opt. Lett. 31, 1112–1114 (2006).

    Article  ADS  Google Scholar 

  23. Padilla, W. J. et al. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B 75, 041102(R) (2007).

    Article  ADS  Google Scholar 

  24. O'Hara, J. F., Zide, J. M. O., Gossard, A. C., Taylor, A. J. & Averitt, R. D. Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices, Appl. Phys. Lett. 88, 251119 (2006).

    Article  ADS  Google Scholar 

  25. Acuna, G. et al. Surface plasmons in terahertz metamaterials. Opt. Express 16, 18745–18751 (2008).

    Article  ADS  Google Scholar 

  26. Lee, J. W. et al. Invisible plasmonic meta-materials through impedance matching to vacuum. Opt. Express 13, 10681–10687 (2005).

    Article  ADS  Google Scholar 

  27. Zhao, G., Schouten, R. N., van der Valk, N., Wenckebach, W. Th. & Planken, P. C. M. Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter. Rev. Sci. Instrum. 73, 1715–1719 (2002).

    Article  ADS  Google Scholar 

  28. Cai, Y. et al. Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection. Appl. Phys. Lett. 73, 444–446 (1998).

    Article  ADS  Google Scholar 

  29. Jackson, J. D. Classical Electrodynamics 3rd edn (John Wiley & Sons, 1998).

    MATH  Google Scholar 

  30. Azad, A. K., Taylor, A. J., Smirnova, E. & O'Hara, J. F. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl. Phys. Lett. 92, 011119 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. Brener for coordinating the sample fabrication, J.F. O'Hara for discussions and the use of the terahertz system, and D. Lippens for useful discussions. We acknowledge support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou-Tong Chen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HT., Padilla, W., Cich, M. et al. A metamaterial solid-state terahertz phase modulator. Nature Photon 3, 148–151 (2009). https://doi.org/10.1038/nphoton.2009.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing