Aperiodic volume optics


Volumetric integrated optical micro- and nanosystems are becoming the new frontier in photonics. Fine control over the material structure within a volume enables novel physical phenomena and previously unthinkable design freedom for spatial, spectral and temporal functions. For instance, materials have been tailored to control light through the use of metamaterials, disordered media and photonic crystals. Although periodic structures have been thoroughly investigated, volumetric aperiodic structures remain largely unexplored. The design of higher dimensional structures is of interest for controlling the multidimensional coherence function (which describes light fields) through diffraction, refraction, radiation and scattering. This report presents a three-dimensional scattering approach to the design of aperiodic volume optical elements and explores new functionalities making use of the now available three-dimensional degrees of freedom. Aperiodic volume elements that multiplex spatial and spectral information are numerically designed and experimentally demonstrated for the first time, hence expanding the traditional capabilities of volume holography, photonic crystals and diffractive optics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Relation between a 3D scattering potential and the far-field waves.
Figure 2: Ewald spheres for three different illumination conditions.
Figure 3: Projection optimization algorithm applied to volume optics design.
Figure 4: Far-field and near-field wave propagation in volume optics.
Figure 5: Performance of volume optics designs as a function of index contrast.
Figure 6: Experimental demonstration of angular and wavelength multiplexing.


  1. 1

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  2. 2

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Article  Google Scholar 

  3. 3

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    Li, J. & Pendry, J. B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 1001, 203901 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 294–296 (1999).

    Article  Google Scholar 

  7. 7

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  Google Scholar 

  8. 8

    Lohmann, A. W. & Paris, D. P. Binary Fraunhofer holograms, generated by computer. Appl. Opt. 6, 1739–1748 (1967).

    ADS  Article  Google Scholar 

  9. 9

    Herzig, H. P. Micro-Optics: Elements, Systems, and Applications (Taylor and Francis, 1997).

    Google Scholar 

  10. 10

    Jesacher, A., Fürhapter, S., Bernet, S. & Ritsch-Marte, M. Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett. 94, 233902 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Levy, U., Kim, H.-C., Tsai, C.-H. & Fainman, Y. Near-infrared demonstration of computer generated holograms implemented by using subwavelength gratings with space-variant orientation. Opt. Lett. 30, 2089–2091 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Tsai, C.-H., Levy, U., Pang, L. & Fainman, Y. Form-birefringent space-variant inhomogeneous medium element for shaping point-spread functions. Appl. Opt 45, 1777–1784 (2006).

    ADS  Article  Google Scholar 

  14. 14

    Bartelt, H. Computer-generated holographic component with optimum light efficiency. Appl. Opt. 23, 1499–1502 (1984).

    ADS  Article  Google Scholar 

  15. 15

    Nordin, G. P., Johnson, R. V. & Tanguay Jr, A. R. Diffraction properties of stratified volume holographic optical elements. J. Opt. Soc. Am. A 9, 2206–2217 (1992).

    ADS  Article  Google Scholar 

  16. 16

    Borgsmüller, S., Noehte, S., Dietrich, C., Kresse, T. & Männer, R. Computer-generated stratified diffractive optical elements. Appl. Opt. 42, 5274–5283 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Cai, W., Reber, T. J. & Piestun, R. Computer-generated volume holograms fabricated by femtosecond laser micromachining. Opt. Lett. 31, 1836–1838 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Gerke, T. D. & Piestun, R. Aperiodic computer-generated volume holograms improve the performance of amplitude volume gratings. Opt. Express 15, 14954–14960 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Miller, D. A. B. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. Appl. Opt. 39, 1681–1699 (2000).

    ADS  Article  Google Scholar 

  20. 20

    Piestun, R. & Miller, D. A. B. Electromagnetic degrees of freedom of an optical system. J. Opt. Soc. Am. A 17, 892–902 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Piestun, R. & de Sterke, C. M. Fundamental limit for two-dimensional passive devices. Opt. Lett. 34, 779–781 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Brady, D., Chen, A. G. -S. & Rodriguez, G. Volume holographic pulse shaping. Opt. Lett. 17, 610–612 (1992).

    ADS  Article  Google Scholar 

  23. 23

    Barbastathis, G. & Brady, D. J. Multidimensional tomographic imaging using volume holography. Proc. IEEE 87, 2098–2120 (1999).

    Article  Google Scholar 

  24. 24

    Barbastathis, G., Balberg, M. & Brady, D. J. Confocal microscopy with a volume holographic filter. Opt. Lett. 24, 811–813 (1999).

    ADS  Article  Google Scholar 

  25. 25

    Brady, D. & Psaltis, D. Control of volume holograms. J. Opt. Soc. Am. A 9, 1167–1182 (1992).

    ADS  Article  Google Scholar 

  26. 26

    Glezer, E. N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).

    ADS  Article  Google Scholar 

  27. 27

    Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    ADS  Google Scholar 

  28. 28

    Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).

    ADS  Article  Google Scholar 

  29. 29

    Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 1999).

    Google Scholar 

  30. 30

    Piestun, R. & Shamir, J. Control of wave-front propagation with diffractive elements. Opt. Lett. 19, 771–773 (1994).

    ADS  Article  Google Scholar 

  31. 31

    Piestun, R., Spektor, B. & Shamir, J. Wave fields in three dimensions: analysis and synthesis. J. Opt. Soc. Am. A 13, 1837–1848 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32

    Piestun, R. & Shamir, J. Synthesis of three-dimensional light fields and applications. Proc. IEEE 90, 222–244 (2002).

    Article  Google Scholar 

  33. 33

    Stark, H. & Yang, Y. Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics (Wiley, 1998).

    Google Scholar 

  34. 34

    Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  35. 35

    Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    ADS  Article  Google Scholar 

  36. 36

    Gerchberg, R. Super-resolution through error energy reduction. Optica Acta 21, 709–720 (1974).

    ADS  Article  Google Scholar 

  37. 37

    Papoulis, A. A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circ. Syst. 22, 735–742 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  38. 38

    Wyrowski, F. & Bryngdahl, O. Iterative Fourier-transform algorithm applied to computer holography. J. Opt. Soc. Am. A 5, 1058–1065 (1988).

    ADS  Article  Google Scholar 

  39. 39

    Bryngdahl, O. & Wyrowski, F. Digital holography – computer-generated holograms. Prog. Opt. 28, 1–86 (1990).

    ADS  Article  Google Scholar 

  40. 40

    Brady, D. J. Optical Imaging and Spectroscopy (Wiley, 2009).

    Google Scholar 

Download references


The authors thankfully acknowledge support from the National Science Foundation through the NIRT and IGERT programs (awards DMI-0304650 and DGE-0801680).

Author information




R.P. conceived the idea and supervised the project. T.G. and R.P developed the model, algorithm and experimental plans. T.G. performed the designs, experimental fabrication, and characterization. R.P. and T.G. wrote the paper.

Corresponding author

Correspondence to Rafael Piestun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gerke, T., Piestun, R. Aperiodic volume optics. Nature Photon 4, 188–193 (2010). https://doi.org/10.1038/nphoton.2009.290

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing