Article | Published:

Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells

Nature Photonics volume 4, pages 112116 (2010) | Download Citation

Abstract

The coherent control of mesoscopic ensembles of atoms and Rydberg atom blockade are the basis for proposed quantum devices such as integrable gates and single-photon sources. To date, experimental progress has been limited to complex experimental set-ups that use ultracold atoms. Here, we show that coherence times of 100 ns are achievable with coherent Rydberg atom spectroscopy in micrometre-sized thermal vapour cells. We investigate states with principle quantum numbers between 30 and 50. Our results demonstrate that microcells with a size on the order of the blockade radius (2 µm), at temperatures of 100–300 °C, are robust and promising candidates for investigating low-dimensional strongly interacting Rydberg gases, constructing quantum gates and building single-photon sources.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).

  2. 2.

    et al. Local blockade of Rydberg excitations in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004).

  3. 3.

    , , , & Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004).

  4. 4.

    , , & Cold Cs Rydberg–gas interactions. Phys. Rev. A 74, 020701(R) (2006).

  5. 5.

    , , , & Electric field effects in the excitation of cold Rydberg–atom pairs. Phys. Rev. Lett. 102, 213201 (2009)

  6. 6.

    & Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009).

  7. 7.

    et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

  8. 8.

    & Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002)

  9. 9.

    et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009).

  10. 10.

    et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009).

  11. 11.

    Rubidium on a chip. Nature Photon. 1, 315–316 (2007).

  12. 12.

    et al. Atomic spectroscopy on a chip. Nature Photon. 1, 331–335 (2007).

  13. 13.

    & Magneto-optics: hot atoms rotate light rapidly. Nature Photon. 3, 197–199 (2009).

  14. 14.

    , & Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

  15. 15.

    , , & Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  16. 16.

    , , , & A tunable four pass narrow spectral bandwidth amplifier for use at 500 nm. Appl. Opt. 46, 1310–1315 (2007).

  17. 17.

    , , , & A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect. Nature Photon. 3, 225–229 (2009).

  18. 18.

    , & Atoms in micron-sized metallic and dielectric waveguides. Phil. Trans. R. Soc. Lond. A 355, 2353–2365 (1997).

  19. 19.

    Van der Waals shifts in an atom near absorptive dielectric mirrors. Proc. R. Soc. Lond. A 453, 2461–2495 (1997).

  20. 20.

    & Quantum electrodynamics near an interface. Phys. Rev. A 32, 2030–2043 (1985).

  21. 21.

    , , , & Resonant coupling in the Van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy. Eur. Phys. J. D 23, 237–255 (2003).

  22. 22.

    , , & Frequency shifts and line broadenings in collisions between Rydberg atoms and ground-state alkali-metal atoms. Phys. Rev. A 35, 690–700 (1987).

  23. 23.

    & Rydberg atoms in far–infrared radiation fields. I. Dipole matrix elements of H, Li, and Rb. Phys. Rev. A 57, 4533–4545 (1998).

  24. 24.

    & Infrared lattice bands of quartz. Phys. Rev. 121, 1324–1334 (1961).

  25. 25.

    Rydberg Atoms (Cambridge Univ. Press, 1994).

  26. 26.

    , , & Stark structure of the Rydberg states of alkali-metal atoms. Phys. Rev. A 20, 2251–2275 (1979).

Download references

Acknowledgements

We acknowledge fruitful discussions with H.P. Büchler, C.S. Adams and H. Giessen, as well as financial support from the Landesstiftung Baden-Württemberg. J.P. S. acknowledges support from the Alexander von Humboldt Foundation and the National Science Foundation (PHY-0855324). We acknowledge the technical assistance of R. August and J. Quack.

Author information

Affiliations

  1. 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

    • H. Kübler
    • , J. P. Shaffer
    • , T. Baluktsian
    • , R. Löw
    •  & T. Pfau
  2. Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, Oklahoma 73019, USA

    • J. P. Shaffer

Authors

  1. Search for H. Kübler in:

  2. Search for J. P. Shaffer in:

  3. Search for T. Baluktsian in:

  4. Search for R. Löw in:

  5. Search for T. Pfau in:

Contributions

H.K. and J.S. took and analysed the data. All authors conceived the experiment. T.B. fabricated the cells. H.K. and J.S. prepared the manuscript. T.P. and R.L. also contributed to the manuscript. T.P. supervised and coordinated all the work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to T. Pfau.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.260

Further reading