Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects

Abstract

Silicon photonics enables the fabrication of on-chip, ultrahigh-bandwidth optical networks that are critical for the future of microelectronics1,2,3. Several optical components necessary for implementing a wavelength division multiplexing network have been demonstrated in silicon. However, a fully integrated multiple-wavelength source capable of driving such a network has not yet been realized. Optical amplification, a necessary component for lasing, has been achieved on-chip through stimulated Raman scattering4,5, parametric mixing6 and by silicon nanocrystals7 or nanopatterned silicon8. Losses in most of these structures have prevented oscillation. Raman oscillators have been demonstrated9,10,11, but with a narrow gain bandwidth that is insufficient for wavelength division multiplexing. Here, we demonstrate the first monolithically integrated CMOS-compatible source by creating an optical parametric oscillator formed by a silicon nitride ring resonator on silicon. The device can generate more than 100 new wavelengths with operating powers below 50 mW. This source can form the backbone of a high-bandwidth optical network on a microelectronic chip.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: On-chip optical parametric oscillator.
Figure 2: Four-wave mixing in silicon nitride waveguides.
Figure 3: Demonstration of optical parametric oscillation for an integrated multiple-wavelength source.
Figure 4: Measurement of the oscillation threshold.

Similar content being viewed by others

References

  1. Alduino, A. & Paniccia, M. Interconnects: wiring electronics with light. Nature Photon. 1, 153–155 (2007).

    Article  ADS  Google Scholar 

  2. Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Top. Quant. Electron. 6, 1312–1317 (2000).

    Article  ADS  Google Scholar 

  3. Lee, B. G. et al. Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks. IEEE Photon. Technol. Lett. 20, 398–400 (2008).

    Article  ADS  Google Scholar 

  4. Liang, T. K. & Tsang, H. K. Efficient Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 85, 3343–3345 (2004).

    Article  ADS  Google Scholar 

  5. Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003).

    Article  ADS  Google Scholar 

  6. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  7. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    Article  ADS  Google Scholar 

  8. Cloutier, S. G., Kossyrev, P. A. & Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Mater. 4, 887–891 (2005).

    Article  ADS  Google Scholar 

  9. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  10. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  11. Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

    Article  ADS  Google Scholar 

  12. Luan, F. et al. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb s−1 signals. Opt. Express 17, 3514–3520 (2009).

    Article  ADS  Google Scholar 

  13. Turner, A. C. et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006).

    Article  ADS  Google Scholar 

  14. Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

    Article  ADS  Google Scholar 

  15. Absil, P. P. et al. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000).

    Article  ADS  Google Scholar 

  16. Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon. 2, 737–740 (2008).

    Article  ADS  Google Scholar 

  17. Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    Article  ADS  Google Scholar 

  18. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  19. Agha, I. H., Okawachi, Y., Foster, M. A., Sharping, J. E. & Gaeta, A. L. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres. Phys. Rev. A 76, 043837 (2007).

    Article  ADS  Google Scholar 

  20. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  21. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  ADS  Google Scholar 

  22. Ikeda, K., Saperstein, R. E., Alic, N. & Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008).

    Article  ADS  Google Scholar 

  23. Stutius, W. & Streifer, W. Silicon nitride films on silicon for optical waveguides. Appl. Opt. 16, 3218–3222 (1977).

    Article  ADS  Google Scholar 

  24. Gorin, A., Jaouad, A., Grondin, E., Aimez, V. & Charette, P. Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties. Opt. Express 16, 13509–13516 (2008).

    Article  ADS  Google Scholar 

  25. Melchiorri, M. et al. Propagation losses of silicon nitride waveguides in the near-infrared range. Appl. Phys. Lett. 86, 121111 (2005).

    Article  ADS  Google Scholar 

  26. Shaw, M. J., Guo, J., Vawter, G. A., Habermehl, S. & Sullivan, C. T. Fabrication techniques for low-loss silicon nitride waveguides. Proc. SPIE 5720, 109–118 (2005).

    Article  ADS  Google Scholar 

  27. Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    Article  ADS  Google Scholar 

  28. Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  29. Gondarenko, A., Levy, J. S. & Lipson, M. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009).

    Article  ADS  Google Scholar 

  30. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Defense Advanced Research Projects Agency (DARPA) for supporting this work under the Optical Arbitrary Waveform Generation Program and the MTO POPS Program. This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (grant no. ECS-0335765).

Author information

Authors and Affiliations

Authors

Contributions

J.S.L., A.G., M.A.F. and A.C.T. performed the experiments for the multiple frequency generation. J.S.L., M.A.F. and A.C.T. performed the experiments on the parametric gain in straight silicon nitride waveguides. M.A.F. and J.S.L. performed the linewidth measurements. J.S.L. designed the waveguide dimensions. J.S.L. and A.G. developed the fabrication process and fabricated the devices. M.L. and A.L.G. supervised the project.

Corresponding author

Correspondence to Michal Lipson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, J., Gondarenko, A., Foster, M. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon 4, 37–40 (2010). https://doi.org/10.1038/nphoton.2009.259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing