Letter | Published:

Synthesis of a single cycle of light with compact erbium-doped fibre technology

Nature Photonics volume 4, pages 3336 (2010) | Download Citation

Abstract

The advent of self-referenced optical frequency combs1,2 has sparked the development of novel areas in ultrafast sciences such as attosecond technology3,4 and the synthesis of arbitrary optical waveforms5,6. Few-cycle light pulses are key to these time-domain applications, driving a quest for reliable, stable and cost-efficient mode-locked laser sources with ultrahigh spectral bandwidth. Here, we present a set-up based entirely on compact erbium-doped fibre technology, which produces single cycles of light. The pulse duration of 4.3 fs is close to the shortest possible value for a data bit of information transmitted in the near-infrared regime. These results demonstrate that fundamental limits for optical telecommunications are accessible with existing fibre technology and standard free-space components.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

  2. 2.

    , & Optical frequency metrology. Nature 416, 233–237 (2002).

  3. 3.

    & Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

  4. 4.

    et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-X-ray harmonic continua. New J. Phys. 9, 242–253 (2007).

  5. 5.

    et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers. Science 293, 1286–1289 (2001).

  6. 6.

    , , , & Few-cycle femtosecond field synthesizer. Opt. Express 16, 17410–17419 (2008).

  7. 7.

    , , & Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

  8. 8.

    et al. Controlled waveforms on the single-cycle scale from a femtosecond oscillator. Opt. Express 16, 9739–9745 (2008).

  9. 9.

    et al. Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate. Opt. Lett. 22, 1562–1564 (1997).

  10. 10.

    et al. Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation. Opt. Lett. 28, 2258–2260 (2003).

  11. 11.

    et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28, 1987–1989 (2003).

  12. 12.

    , , & Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. Opt. Lett. 20, 1562–1564 (1995).

  13. 13.

    , & Sub-20-fs pulses tunable across the visible from a blue-pumped singlepass noncollinear parametric converter. Opt. Lett. 22, 1494–1496 (1997).

  14. 14.

    , & Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett. 27, 306–308 (2002).

  15. 15.

    et al. Sub-two-cycle light pulses at 1.6 µm from an optical parametric amplifier. Opt. Lett. 33, 741–743 (2008).

  16. 16.

    , , , & 8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation. Opt. Express 17, 1070–1077 (2009).

  17. 17.

    et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation. Opt. Lett. 28, 947–949 (2003).

  18. 18.

    , , , & Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser. Opt. Lett. 32, 3504–3506 (2007).

  19. 19.

    et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

  20. 20.

    , , & 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080–1082 (1993).

  21. 21.

    , & Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution. Opt. Express 11, 594–600 (2003).

  22. 22.

    , & Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source. Opt. Lett. 29, 516–518 (2004).

  23. 23.

    , , , & Ultrashort pulse characterization with SHG collinear-FROG. Opt. Express 12, 1169–1178 (2004).

  24. 24.

    & Interferometric frequency-resolved optical gating. Opt. Express 13, 2617–2626 (2005).

  25. 25.

    et al. Nanomechanical control of an optical antenna. Nature Photon. 2, 230–233 (2008).

  26. 26.

    , & Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV cm−1. Opt. Lett. 33, 2767–2769 (2008).

  27. 27.

    , , & Mid-IR short-pulse OPCPA with micro-Joule energy at 100 kHz. Opt. Express 17, 3587–3594 (2009).

Download references

Author information

Author notes

    • Günther Krauss
    •  & Sebastian Lohss

    These authors contributed equally to this work

Affiliations

  1. Department of Physics and Center for Applied Photonics, University of Konstanz, D-78464 Konstanz, Germany

    • Günther Krauss
    • , Sebastian Lohss
    • , Tobias Hanke
    • , Alexander Sell
    • , Stefan Eggert
    • , Rupert Huber
    •  & Alfred Leitenstorfer

Authors

  1. Search for Günther Krauss in:

  2. Search for Sebastian Lohss in:

  3. Search for Tobias Hanke in:

  4. Search for Alexander Sell in:

  5. Search for Stefan Eggert in:

  6. Search for Rupert Huber in:

  7. Search for Alfred Leitenstorfer in:

Contributions

A.L., G.K., S.L., A.S. and R.H. conceived the experiment, and together with T.H. and S.E. carried it out; G.K., S.L., A.L. and A.S. designed and carried out the data analysis; G.K., S.L., R.H. and A.L. co-wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Alfred Leitenstorfer.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.258

Further reading