Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seven-octave high-brightness and carrier-envelope-phase-stable light source

Abstract

High-brightness sources of coherent and few-cycle-duration light waveforms with spectral coverage from the ultraviolet to the terahertz would offer unprecedented versatility and opportunities for a wide range of applications from bio-chemical sensing1 to time-resolved and nonlinear spectroscopy, and to attosecond light-wave electronics2,3. Combinations of various sources with frequency conversion4,5 and supercontinuum generation6,7,8,9 can provide relatively large spectral coverage, but many applications require a much broader spectral range10 and low-jitter synchronization for time-domain measurements11. Here, we present a carrier-envelope-phase (CEP)-stable light source, seeded by a mid-infrared frequency comb12,13, with simultaneous spectral coverage across seven optical octaves, from the ultraviolet (340 nm) into the terahertz (40,000 nm). Combining soliton self-compression and dispersive wave generation in an anti-resonant-reflection photonic-crystal fibre with intra-pulse difference frequency generation in BaGa2GeSe6, the spectral brightness is two to five orders of magnitude above that of synchrotron sources. This will enable high-dynamic-range spectroscopies and provide numerous opportunities in attosecond physics and material sciences14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurement application and layout of the seven-octave coherent light source.
Fig. 2: Pressure dependence of the mid-IR soliton self-compression and DW generation.
Fig. 3: IP-DFG comparison of ZGP, BGGSe and GaSe at 25 bar.
Fig. 4: High-brightness seven-octave few-cycle supercontinuum.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The numerical code used in this work will be made available upon reasonable request.

References

  1. Borrego-Varillas, R. et al. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem. Sci. 10, 9907–9921 (2019).

    Article  Google Scholar 

  2. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  3. Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    Article  ADS  Google Scholar 

  4. Baudisch, M., Wolter, B., Pullen, M., Hemmer, M. & Biegert, J. High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs. Opt. Lett. 41, 3583–3586 (2016).

    Article  ADS  Google Scholar 

  5. Liang, H. et al. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nat. Commun. 8, 141 (2017).

    Article  ADS  Google Scholar 

  6. Silva, F. et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun. 3, 807 (2012).

    Article  ADS  Google Scholar 

  7. Hudson, D. D., Baudisch, M., Werdehausen, D., Eggleton, B. J. & Biegert, J. 1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA. Opt. Lett. 39, 5752–5755 (2014).

    Article  ADS  Google Scholar 

  8. Vasilyev, S. et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses. Optica 6, 111–114 (2019).

    Article  ADS  Google Scholar 

  9. Mitrofanov, A. V. et al. Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica 7, 15–19 (2020).

    Article  ADS  Google Scholar 

  10. Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018).

    Article  ADS  Google Scholar 

  11. Pupeza, I. et al. Field-resolved infrared spectroscopy of biological systems. Nature 577, 52–59 (2020).

    Article  ADS  Google Scholar 

  12. Thai, A., Hemmer, M., Bates, P. K., Chalus, O. & Biegert, J. Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate. Opt. Lett. 36, 3918–3920 (2011).

    Article  ADS  Google Scholar 

  13. Elu, U. et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 4, 1024–1029 (2017).

    Article  ADS  Google Scholar 

  14. Rini, M. et al. Transient electronic structure of the photoinduced phase of Pr0.7Ca0.3MnO3 probed with soft X-ray pulses. Phys. Rev. B 80, 155113 (2009).

    Article  ADS  Google Scholar 

  15. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  ADS  Google Scholar 

  16. Demtröder, W. Laser Spectroscopy 2—Experimental Techniques (Springer, 2015).

  17. Wright, J. C. Multiresonant coherent multidimensional spectroscopy. Annu. Rev. Phys. Chem. 62, 209–230 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  18. Chang, C.-I. Hyperspectral Imaging (Springer, 2003).

  19. Bertrand, L. et al. Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl. Phys. A 106, 377–396 (2012).

    Article  ADS  Google Scholar 

  20. Jamin, N. et al. Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc. Natl Acad. Sci. USA 95, 4837–4840 (1998).

    Article  ADS  Google Scholar 

  21. Langer, F. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).

    Article  ADS  Google Scholar 

  22. Silva, R. E. F., Jiménez-Galán, Amorim, B., Smirnova, O. & Ivanov, M. Topological strong-field physics on sub-laser-cycle timescale. Nat. Photon. 13, 849–854 (2019).

    Article  ADS  Google Scholar 

  23. Köttig, F., Tani, F., Biersach, C. M., Travers, J. C. & Russell, P. S. J. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica 4, 1272–1276 (2017).

    Article  ADS  Google Scholar 

  24. Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    Article  ADS  Google Scholar 

  25. Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100-MHz repetition rate. Nat. Photon. 9, 721–724 (2015).

    Article  ADS  Google Scholar 

  26. Hoogland, H. et al. All-PM coherent 2.05-µm thulium/holmium fiber frequency comb source at 100 MHz with up to 0.5-W average power and pulse duration down to 135 fs. Opt. Express 21, 31390–31394 (2013).

    Article  ADS  Google Scholar 

  27. Kowligy, A. S. et al. Infrared electric-field sampled frequency comb spectroscopy. Sci. Adv. 5, eaaw8794 (2019).

    Article  ADS  Google Scholar 

  28. Badikov, V. V. et al. Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa2GeS6 and BaGa2GeSe6. Opt. Mater. Express 6, 2933–2938 (2016).

    Article  ADS  Google Scholar 

  29. Elu, U. et al. Few-cycle mid-infrared pulses from BaGa2GeSe6. Opt. Lett. 45, 3813–3815 (2020).

    Article  ADS  Google Scholar 

  30. Lesko, M. B. et al. A six-octave optical frequency comb from a scalable few-cycle erbium fiber laser. Preprint at https://arxiv.org/abs/2005.13673 (2020).

  31. Tani, F., Travers, J. C. & St.J. Russell, P. Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in Kagomé photonic-crystal fiber. J. Opt. Soc. Am. B 31, 311–320 (2014).

    Article  ADS  Google Scholar 

  32. Porer, M., Ménard, J.-M. & Huber, R. Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling. Opt. Lett. 39, 2435–2438 (2014).

    Article  ADS  Google Scholar 

  33. Knorr, M. et al. Ultrabroadband etalon-free detection of infrared transients by van-der-Waals contacted sub-10-µm GaSe detectors. Opt. Express 26, 19059–19066 (2018).

    Article  ADS  Google Scholar 

  34. Zeisberger, M. & Schmidt, M. A. Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers. Sci. Rep. 7, 11761 (2017).

    Article  ADS  Google Scholar 

  35. Tani, F., Köttig, F., Novoa, D., Keding, R. & Russell, P. S. J. Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers. Photon. Res. 6, 84–88 (2018).

    Article  Google Scholar 

  36. Vincetti, L. & Rosa, L. A simple analytical model for confinement loss estimation in hollow-core tube lattice fibers. Opt. Express 27, 5230–5237 (2019).

    Article  ADS  Google Scholar 

  37. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.B. and his group acknowledge financial support from the European Research Council via ERC Advanced Grant ‘TRANSFORMER’ (788218) and ERC Proof of Concept Grant ‘mini-X’ (840010), the European Union’s Horizon 2020 for FET-OPEN ‘PETACom’ (829153), FET-OPEN ‘OPTOlogic’ (899794), Laserlab-Europe (EU-H2020 654148), Marie Skłodowska-Curie grant no. 860553 (‘Smart-X’), MINECO for Plan Nacional FIS2017-89536-P, AGAUR for 2017 SGR 1639, MINECO for ‘Severo Ochoa’ (SEV- 2015-0522), Fundació Cellex Barcelona, CERCA Programme/Generalitat de Catalunya and the Alexander von Humboldt Foundation for the Friedrich Wilhelm Bessel Prize. We thank I. Tyulnev and M. Enders for their assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.B. conceived and supervised the project. U.E. performed the experiments and analysed the results with help from L.V. and L.M. V.B., D.B. and V.P. provided the BGGSe crystal. F.T., D.N., M.H.F. and P.St.J.R. provided the ARR-PCF fibre together with experimental support and the simulations of self-compression. L.M. and J.B. wrote the manuscript.

Corresponding author

Correspondence to Jens Biegert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elu, U., Maidment, L., Vamos, L. et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat. Photonics 15, 277–280 (2021). https://doi.org/10.1038/s41566-020-00735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00735-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing