Review Article | Published:

Single-photon detectors for optical quantum information applications

Nature Photonics volume 3, pages 696705 (2009) | Download Citation

Subjects

Abstract

The past decade has seen a dramatic increase in interest in new single-photon detector technologies. A major cause of this trend has undoubtedly been the push towards optical quantum information applications such as quantum key distribution. These new applications place extreme demands on detector performance that go beyond the capabilities of established single-photon detectors. There has been considerable effort to improve conventional photon-counting detectors and to transform new device concepts into workable technologies for optical quantum information applications. This Review aims to highlight the significant recent progress made in improving single-photon detector technologies, and the impact that these developments will have on quantum optics and quantum information science.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    On a heuristic point of view about the creation and conversion of light. Ann. Phys. (Leipz.) 17, 132–148 (1905).

  2. 2.

    Quantum Theory of Light 3rd edn, Ch. 1 (Oxford Univ. Press, 2000).

  3. 3.

    Advanced Time-Correlated Single Photon Counting Techniques Ch. 2 (Springer, 2005).

  4. 4.

    Introduction to journal of modern optics special issue on single-photon: detectors, applications, and measurement methods. J. Mod. Opt. 51, 1265–1266 (2004).

  5. 5.

    & Quantum Computation and Quantum Information Ch. 1 (Cambridge Univ. Press, 2000).

  6. 6.

    et al. Quantum information processing and communication. Eur. Phys. J. D 36, 203–228 (2005).

  7. 7.

    & in Proc. IEEE Int. Conf. Computers, Systems and Signal Processing, Bangalore 175–179 (1984).

  8. 8.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  9. 9.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  10. 10.

    et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–175 (2007).

  11. 11.

    Optical quantum computing. Science 318, 1567–1570 (2007).

  12. 12.

    , & How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

  13. 13.

    & A Guide to Experiments in Quantum Optics 2nd edn, Ch. 7 (Wiley-VCH, 2004).

  14. 14.

    , & Absolute measurement of detector quantum efficiency using parametric downconversion. Appl. Opt. 26, 4616–4619 (1987).

  15. 15.

    & Single-photon detector characterization using correlated photons: the march from feasibility to metrology. J. Mod. Opt. 51, 1549–1557 (2004).

  16. 16.

    et al. Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector. Appl. Phys. Lett. 89, 031109 (2006).

  17. 17.

    Detecting quantum light. Contemp. Phys. 48, 143–156 (2007).

  18. 18.

    et al. Photonic technologies for quantum information processing. Quantum Inf. Process. 3, 215–231 (2004).

  19. 19.

    Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

  20. 20.

    , & Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

  21. 21.

    , & Photon-number-resolving detector with 10 bits of resolution. Phys. Rev. A 75, 062325 (2007).

  22. 22.

    et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nature Photon. 2, 302–306 (2008).

  23. 23.

    , , , & Fiber-assisted detection with photon-number resolution. Opt. Lett. 28, 2387–2389 (2003).

  24. 24.

    Photodetectors: Devices, Circuits and Applications Ch. 3 (Prentice Hall, 2000).

  25. 25.

    , & Single-photon sources, detectors, applications and measurement methods. J. Mod. Opt. 56, 139–140 (2009).

  26. 26.

    Photomultipliers for scintillation counting. RCA Rev. 10, 525–553 (1949).

  27. 27.

    Single-photon detection and timing: experiments and techniques. Adv. Electron. El. Phys. 31, 39–117 (1972).

  28. 28.

    .

  29. 29.

    .

  30. 30.

    , , , & Ultrafast microchannel plate photomultipliers. Appl. Opt. 27, 1170–1178 (1988).

  31. 31.

    .

  32. 32.

    .

  33. 33.

    , , , & High speed HPD for photon counting. IEEE Trans. Nucl. Sci. 55, 758–762 (2008).

  34. 34.

    , & Towards picoseconds resolution with single-photon avalanche diodes. Rev. Sci. Inst. 52, 408–412 (1981).

  35. 35.

    Mechanisms contributing to the noise pulse rate of avalanche diodes. J. Appl. Phys. 36, 3123–3131 (1965).

  36. 36.

    , , & Characterization of silicon avalanche photodiodes for photon correlation measurements 2: Active quenching. Appl. Opt. 26, 2383–2389 (1987).

  37. 37.

    et al. Photon counting techniques with silicon avalanche photodiodes. Appl. Opt. 32, 3894–3900 (1993).

  38. 38.

    .

  39. 39.

    Photon number resolving in Geiger mode avalanche photodiode photon counters. J. Mod. Opt. 51, 1491–1498 (2004).

  40. 40.

    , , & The breakdown flash of silicon avalanche photodiodes — a back door for eavesdropper attacks? J. Mod. Opt. 48, 2039–2047 (2001).

  41. 41.

    .

  42. 42.

    , , , & 20-ps timing resolution with single-photon avalanche diodes. Rev. Sci. Inst. 60, 1104–1110 (1989).

  43. 43.

    , , , & Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt. 51, 1267–1288 (2004).

  44. 44.

    , , , & An integrated active-quenching circuit for single-photon avalanche diodes. IEEE Trans. Instr. Meas. 49, 1167–1175 (2000).

  45. 45.

    et al. Optical crosstalk in single photon avalanche diode arrays: a new complete model. Opt. Express 16, 8381–8394 (2008).

  46. 46.

    , , , & SiPM for fast photon-counting and multiphoton detection. Opt. Express 15, 14539–14549 (2007).

  47. 47.

    , , & Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors Appl. Opt. 35, 2986–2996 (1996).

  48. 48.

    , , & Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters. Appl. Opt. 37, 2272–2277 (1998).

  49. 49.

    , , , & Single-photon counting for the 1300–1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes. Appl. Opt. 39, 6746–6753 (2000).

  50. 50.

    et al. Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 μm. Appl. Opt. 39, 6818–6829 (2000).

  51. 51.

    & An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light. IEEE J. Quant. Elect. 36, 340–347 (2000).

  52. 52.

    et al. Design and performance of an InGaAs-InP single-photon avalanche diode detector. IEEE J. Quant. Elect. 42, 397–403 (2006).

  53. 53.

    .

  54. 54.

    .

  55. 55.

    , & Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004).

  56. 56.

    , & 800 MHz single-photon detection at 1550-nm using an InGaAs/InP photodiode operated with a sine wave gating. Opt. Express 14, 10043–10049 (2006).

  57. 57.

    , , , & Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Opt. Express 16, 18790–18797 (2008).

  58. 58.

    , , , & Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths. Appl. Phys. Lett. 91, 201114 (2007).

  59. 59.

    , & An avalanche-photodiode-based photon-number-resolving detector. Nature Photon. 2, 425–428 (2008).

  60. 60.

    , & Free-running room temperature operation of an InGaAs/InP single-photon avalanche diode. Appl. Phys. Lett. 94, 071116 (2009).

  61. 61.

    , & Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

  62. 62.

    & Efficient single-photon counting at1.55 μm by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004).

  63. 63.

    & High efficiency single-photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004).

  64. 64.

    et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

  65. 65.

    et al. Differential phase shift quantum key distribution experiment over 105 km fibre. New J. Phys. 7, 232–243 (2005).

  66. 66.

    et al. Low jitter up-conversion detectors for telecom wavelength GHz QKD. New J. Phys. 8, 32–43 (2006).

  67. 67.

    et al. Megabits secure key rate quantum key distribution. New J. Phys. 11, 045010 (2009).

  68. 68.

    et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

  69. 69.

    , , & Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1063–1065 (1999).

  70. 70.

    , , & Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999).

  71. 71.

    et al. High-efficiency photon-number detection for quantum information processing. IEEE J. Sel. Top. Quant. 9, 1502–1511 (2003).

  72. 72.

    , , , & Direct observation of nonclassical photon statistics in parametric down-conversion. Phys. Rev. Lett. 92, 113602 (2004).

  73. 73.

    et al. Detection of single infrared, optical and ultraviolet photons using superconducting transition edge sensors. Appl. Phys. Lett. 73, 735–737 (1998).

  74. 74.

    , , & Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791–793 (2003).

  75. 75.

    , , & Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A 71, 061803 (2005).

  76. 76.

    et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007).

  77. 77.

    et al. Photon number resolving detection with high speed and high quantum efficiency. Metrologia 46, S288–S292 (2009).

  78. 78.

    et al. Direct observation of photon pairs at a single output port of a beam-splitter interferometer. Phys. Rev. A 68, 063817 (2003).

  79. 79.

    et al. Quantum key distribution at telecom wavelengths with noise-free detectors. Appl. Phys. Lett. 88, 021108 (2006).

  80. 80.

    et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

  81. 81.

    et al. Picosecond hot-electron energy relaxation in NbN superconducting photodetectors. Appl. Phys. Lett. 76, 2752–2754 (2000).

  82. 82.

    et al. Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl. Phys. Lett. 80, 4687–4689 (2002).

  83. 83.

    et al. Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates. Appl. Phys. Lett. 92, 061116 (2008).

  84. 84.

    et al. Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007).

  85. 85.

    et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006).

  86. 86.

    et al. Single photon source characterization with a superconducting single photon detector. Opt. Express 13, 10846–10853 (2005).

  87. 87.

    et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14, 527–534 (2006).

  88. 88.

    et al. Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101 (2008).

  89. 89.

    et al. Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. J. Mod. Opt. 56, 364–373 (2009).

  90. 90.

    et al. Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).

  91. 91.

    et al. Detection of single photons using a field-effect transistor gated by a layer of quantum dots. Appl. Phys. Lett. 76, 3673–3675 (2000).

  92. 92.

    et al. Low-noise photon counting with a radio-frequency quantum-dot field-effect transistor. Appl. Phys. Lett. 84, 419–421 (2004).

  93. 93.

    et al. Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 89, 253505 (2006).

  94. 94.

    et al. Photon number resolving detector based on a quantum dot field effect transistor. Appl. Phys. Lett. 90, 181114 (2007).

  95. 95.

    et al. Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nature Photon. 1, 585–588 (2007).

  96. 96.

    et al. Efficient single photon detection by quantum dot resonant tunneling diodes. Phys. Rev. Lett. 94, 067401 (2005).

  97. 97.

    et al. Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection. Appl. Phys. Lett. 91, 073516 (2007).

  98. 98.

    et al. Photoconduction quantization in a single-photon detector. Phys. Rev. B 65, 201307 (2002).

  99. 99.

    et al. Optoelectronic quantum telecommunications based on spins in semiconductors. Proc. IEEE 91, 761–780 (2003).

Download references

Author information

Affiliations

  1. Scottish Universities Physics Alliance and the School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.  r.h.hadfield@hw.ac.uk

    • Robert H. Hadfield

Authors

  1. Search for Robert H. Hadfield in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2009.230

Further reading