Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth

Abstract

Signal processing at terahertz speeds calls for an enormous leap in bandwidth beyond the current capabilities of electronics, for which practical operation is currently limited to tens of gigahertz1. This can be achieved through all-optical schemes making use of the ultrafast response of χ(3) nonlinear waveguides2. Towards this objective, we have developed compact planar rib waveguides based on As2S3 glass, providing a virtual ‘lumped’ high nonlinearity in a monolithic platform capable of integrating multiple functions. Here, we apply it to demonstrate, for the first time, a photonic-chip-based, all-optical, radio-frequency spectrum analyser with the performance advantages of distortion-free, broad measurement bandwidth (>2.5 THz) and flexible wavelength operation (that is, colourless). The key to this is the waveguide's high optical nonlinearity and dispersion-shifted design. Using the device, we characterize high-bit-rate (320 Gb s−1) optical signals impaired by various distortions. The demonstrated ultrafast, broadband capability highlights the potential for integrated chip-based signal processing at bit rates approaching and beyond Tb s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key aspects of the PC-RFSA.
Figure 2: Experimental set-up for measuring 320 Gb s−1 signals using the PC-RFSA.
Figure 3: Comparison of measurement data for 320 Gb s−1 signals.
Figure 4: Performance monitoring of 320 Gb s−1 signals using the PC-RFSA.

Similar content being viewed by others

References

  1. Roberts, K. Electronic dispersion compensation beyond 10 Gb s−1. LEOS Summer Topical Meetings, 9–10 (2007).

  2. Agrawal, G. P. Nonlinear Fiber Optics 3rd edn (Academic Press, 2001).

    MATH  Google Scholar 

  3. Ta'eed, V. G. et al. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J. Sel. Top. Quant. 12, 360–370 (2006).

    Article  Google Scholar 

  4. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photon. 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  5. Yamada, K. et al. All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).

    Article  ADS  Google Scholar 

  6. Olsson, B.-E., Ohlen, P., Rau, L. & Blumenthal, D. J. A simple and robust 40 Gb s−1 wavelength converter using fiber cross-phase modulation and optical filtering. IEEE Photon. Technol. Lett. 12, 846–848 (2000).

    Article  ADS  Google Scholar 

  7. Ta'eed, V. G. et al. Error free all optical wavelength conversion in highly nonlinear As–Se chalcogenide glass fiber. Opt. Express 14, 10371–10376 (2006).

    Article  ADS  Google Scholar 

  8. Tangdiongga, E. et al. All-optical demultiplexing of 640 to 40 Gbits s−1 using filtered chirp of a semiconductor optical amplifier. Opt. Lett. 32, 835–837 (2007).

    Article  ADS  Google Scholar 

  9. Li, J., Olsson, B. E., Karlsson, M. & Andrekson, P. A. OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber. IEEE Photon. Technol. Lett. 15, 1770–1772 (2003).

    Article  ADS  Google Scholar 

  10. Ayotte, S., Xu, S., Rong, H., Cohen, O. & Paniccia, M. J. Dispersion compensation by optical phase conjugation in silicon waveguide. Electron. Lett. 43, 1037–1039 (2007).

    Article  Google Scholar 

  11. Kilper, D. C. et al. Optical performance monitoring. J. Lightwave Technol. 22, 294–304 (2004).

    Article  ADS  Google Scholar 

  12. Luo, T. et al. All-optical chromatic dispersion monitoring of a 40 Gb s−1 RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber. IEEE Photon. Technol. Lett. 18, 430–432 (2006).

    Article  ADS  Google Scholar 

  13. Blows, J. L., Hu, P. & Eggleton, B. J. Differential group delay monitoring using an all-optical signal spectrum-analyser. Opt. Commun. 260, 288–291 (2006).

    Article  ADS  Google Scholar 

  14. Westbrook, P. S., Her, T. H., Eggleton, B. J., Hunsche S. & Raybon, G. Measurement of pulse degradation using all-optical 2R regenerator. Electron. Lett. 38, 1193–1194 (2002).

    Article  Google Scholar 

  15. Witte, R. A. Spectrum and Network Measurements (Prentice Hall, 1993).

    Google Scholar 

  16. Dorrer, C. & Maywar, D. N. RF spectrum analysis of optical signals using nonlinear optics. J. Lightwave Technol. 22, 266–274 (2004).

    Article  ADS  Google Scholar 

  17. Madden, S. J. et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 15, 14414–14421 (2007).

    Article  ADS  Google Scholar 

  18. Lamont, M. R. E., Martijn de Sterke, C. & Eggleton, B. J. Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion. Opt. Express 15, 9458–9463 (2007).

    Article  ADS  Google Scholar 

  19. Takahashi, M. et al. Low-loss and low-dispersion-slope highly nonlinear fibers. J. Lightwave Technol. 23, 3615–3624 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Australian Research Council (ARC) through its ARC Centres of Excellence and Federation Fellowship programs.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to this paper and agreed on the content.

Corresponding author

Correspondence to Mark Pelusi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelusi, M., Luan, F., Vo, T. et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photon 3, 139–143 (2009). https://doi.org/10.1038/nphoton.2009.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing