Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation

Abstract

Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics. Standard optical tweezers make use of a freely propagating laser beam that is tightly focused near the sample by means of a high-numerical-aperture microscope objective. Most of the limitations associated with the microscope's bulky structure could be overcome by exploiting optical fibres for the delivery of the trapping radiation, provided that proper beam-shaping is performed. Here we present the design and the realization of a miniaturized single-fibre optical tweezer that is able to create a purely optical three-dimensional trap. The tweezer uses engineered fibre structures with microstructured end surfaces, and its effectiveness is demonstrated by trapping 10-µm-diameter polystyrene beads. The optical tweezer is able to provide optical manipulation and analysis of microscale specimens and could be the fundamental building block in future integrated fibre-based devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibre structures and tweezer working principle.
Figure 2: Numerical evaluation of the Q factor for three different cutting angles.
Figure 3: Images of the fibre-OT probe.
Figure 4: Trapping image sequence: two polystyrene particles are trapped by the fibre tweezer.
Figure 5: Fluorescence spectra measured by the fibre-probe bundle, with and without the trapped fluorescent bead.

Similar content being viewed by others

References

  1. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–158 (1970).

    Article  ADS  Google Scholar 

  2. Ashkin, A., Dziezic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  3. Ashkin, A., Dziezic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    Article  ADS  Google Scholar 

  4. Ashkin, A. & Dziezic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987).

    Article  ADS  Google Scholar 

  5. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  6. Creely, C. M., Volpe, G., Singh, G. P., Soler, M. & Petrov, D. V. Raman imaging of floating cells. Opt. Express 12, 6105–6110 (2005).

    Article  ADS  Google Scholar 

  7. Whyte, G. et al. An optical trapped microhand for manipulating micron-sized objects. Opt. Express 14, 12497–12502 (2006).

    Article  ADS  Google Scholar 

  8. Bockelmann, U., Thomen, P., Essevaz-Roulet, B., Viasnoff, V. & Heslot, F. Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82, 1537–1553 (2002).

    Article  Google Scholar 

  9. Goksor, M., Enger, J. & Hanstorp, D. Optical manipulation in combination with multiphoton microscopy for single-cell studies. Appl. Opt. 43, 4831–4837 (2004).

    Article  ADS  Google Scholar 

  10. Emiliani, V. et al. Wave front engineering for microscopy of living cells. Opt. Express 13, 1395–1405 (2005).

    Article  ADS  Google Scholar 

  11. Chan, J. W., Winhold, H. K., Lane, S. M. & Huser T. Optical trapping and Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy of submicron-size particles. IEEE J. Sel. Top. Quant. Electron. 11, 858–863 (2005).

    Article  ADS  Google Scholar 

  12. Ashkin, A. Forces of a single beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).

    Article  ADS  Google Scholar 

  13. Wright, W. H., Sonek, G. J. & Berns, M. W. Parametric study of the forces on microspheres held by optical tweezers. Appl. Opt. 33, 1735–1747 (1994).

    Article  ADS  Google Scholar 

  14. Harada, Y. & Asakura, T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime, Opt. Commun. 124, 529–541 (1996).

    Article  ADS  Google Scholar 

  15. Neumann, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  Google Scholar 

  16. Schonbrun, E. et al. 3D interferometric optical tweezers using a single spatial light modulator. Opt. Express 13, 3777–3786 (2005).

    Article  ADS  Google Scholar 

  17. Grier, D. G. & Roichman, Y. Holographic optical trapping. Appl. Opt. 45, 880–887 (2006).

    Article  ADS  Google Scholar 

  18. Xin-Cheng, Y., Zhao-Lin, L., Hong-Lian, G., Bing-Ying, C. & Dao-Zhong, Z. Effects of spherical aberration on optical trapping forces for Rayleigh particles. Chin. Phys. Lett. 18, 432–434 (2001).

    Article  ADS  Google Scholar 

  19. Constable, A., Kim, J., Mervis, J., Zarinetchi, F. & Prentiss, M. Demonstration of a fiber-optical light-force trap. Opt. Lett. 18, 1867–1869 (1993).

    Article  ADS  Google Scholar 

  20. Wei, M., Yang, K., Karmenyan, A. & Chiou, A. Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap. Opt. Express 14, 3056–3064 (2006).

    Article  ADS  Google Scholar 

  21. Jess, P. R. T. et al. Dual beam fibre trap for Raman microspectroscopy of single cells. Opt. Express 14, 5779–5791 (2006).

    Article  ADS  Google Scholar 

  22. Taguchi, K., Ueno, H., Hiramatsu, T. & Ikeda, M. Optical trapping of dielectric particle and biological cell using optical fibre. Electron. Lett. 33, 1413–1414 (1997).

    Article  Google Scholar 

  23. Lyons, E. R. & Sonek, G. J. Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Appl. Phys. Lett. 66, 1584–1586 (1995).

    Article  ADS  Google Scholar 

  24. Hu, Z., Wang, J. & Liang, J. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Opt. Express 12, 4123–4128 (2004).

    Article  ADS  Google Scholar 

  25. Taylor, R. S. & Hnatovsky, C. Particle trapping in 3D using a single fiber probe with an annular light distribution. Opt. Express. 11, 2775–2782 (2003).

    Article  ADS  Google Scholar 

  26. Liu, Z., Guo, C., Yang, J. & Yuan, L. Tapered fiber optical tweezer for microscopic particle trapping: Fabrication and application. Opt. Express 14, 12511–12516 (2006).

    ADS  Google Scholar 

  27. Cristiani, I., Liberale, C. & Minzioni, P. Method and optical device for trapping a particle. PCT patent application PCT/EP/2007/056798 (2007).

  28. O'Neil, A. T. & Padgett, M. J. Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers Opt. Commun. 193, 45–50 (2001).

    Article  ADS  Google Scholar 

  29. Berns, M. M., Fournier, J. M. & Golovchenco, J. A. Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989).

    Article  ADS  Google Scholar 

  30. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, New York, 2006).

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank V. Degiorgio for his advice and for his support for our research. The work was partially supported by an INNESCO grant of CNISM (Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia) and by POSEIDON (POR project 2005–2007 by Regione Calabria).

Author information

Authors and Affiliations

Authors

Contributions

C.L., P.M. and I.C. jointly developed the idea of the probe structure and performed the trapping experiments. C.L and F.B. carried out the numerical simulations. P.M. took care of the fibre bundles preparation, and jointly with E.D.F, F.D.A, C.L. and I.C. completed the probe fabrication processes. C.L., E.D.F. and F.D.A. did the fluorescence measurements. I.C. organized and coordinated all the different phases of the project. The paper was written by I.C. and the Supplementary Information was prepared by P.M.

Corresponding author

Correspondence to Paolo Minzioni.

Supplementary information

Supplementary Information

Supplementary video 1: beam convergence (MPG 2113 kb)

Supplementary Information

Supplementary video 2: trapping (MPG 3630 kb)

Supplementary Information

Supplementary figures S1-S5 and video legends (PDF 1069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liberale, C., Minzioni, P., Bragheri, F. et al. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photon 1, 723–727 (2007). https://doi.org/10.1038/nphoton.2007.230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing