Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

Article metrics

Abstract

Research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-loss photonic integrated devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Unidirectional phase gradient dΦ/dx introduced by a metasurface causes asymmetric waveguide mode coupling.
Figure 2: Asymmetric optical power transmission in waveguides patterned with gradient metasurfaces.
Figure 3: Experimental demonstration of asymmetric optical power transmission in waveguides patterned with gradient metasurfaces.
Figure 4: Mid-infrared waveguide mode converters and polarization rotator based on plasmonic gradient metasurfaces.
Figure 5: Experimental demonstration of mid-infrared waveguide mode converters.
Figure 6: Telecom waveguide mode converters based on dielectric gradient metasurfaces.

References

  1. 1

    Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

  2. 2

    Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

  3. 3

    Wada, K., Luan, H.-C., Lim, D. R. & Kimerling, L. C. On-chip interconnection beyond semiconductor roadmap: silicon microphotonics. Proc. SPIE 4870, 437–443 (2002).

  4. 4

    Jalali, B. & Fathpour, S. Silicon photonics. IEEE J. Lightw. Technol. 24, 4600–4615 (2006).

  5. 5

    Soref, R. A., Emelett, S. J. & Buchwald, W. R. Silicon waveguided components for the long-wave infrared region. J. Opt. A 8, 840–848 (2006).

  6. 6

    Lin, P. T. et al. Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics. Adv. Opt. Mater. 1, 732–739 (2013).

  7. 7

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  8. 8

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  9. 9

    Yu, N. et al. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).

  10. 10

    Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

  11. 11

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

  12. 12

    Shitrit, N., Bretner, I., Gorodetski, Y., Kleiner, V. & Hasman, E. Optical spin Hall effects in plasmonic chains. Nano Lett. 11, 2038–2042 (2011).

  13. 13

    Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

  14. 14

    Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012).

  15. 15

    Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

  16. 16

    Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotech. 10, 308–312 (2015).

  17. 17

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

  18. 18

    Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

  19. 19

    Gok, G. & Grbic, A. Tailoring the phase and power flow of electromagnetic fields. Phys. Rev. Lett. 111, 233904 (2013).

  20. 20

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

  21. 21

    Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).

  22. 22

    Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015).

  23. 23

    Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).

  24. 24

    Sun, W., He, Q., Sun, S. & Zhou, L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Sci. Appl. 5, e16003 (2016).

  25. 25

    Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

  26. 26

    Mansuripur, M. The uncertainty principle in classical optics. Opt. Photon. News 13, 44–48 (2002).

  27. 27

    Holmes, B. M. & Hutchings, D. C. Realization of novel low-loss monolithically integrated passive waveguide mode converters. IEEE Photon. Technol. Lett. 18, 43–45 (2006).

  28. 28

    Velasco, A. V. et al. Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide. Opt. Lett. 37, 365–367 (2012).

  29. 29

    Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016).

  30. 30

    Chen, D. et al. Highly efficient silicon optical polarization rotators based on mode order conversions. Opt. Lett. 41, 1070–1073 (2016).

  31. 31

    Yariv, A. Optical Electronics in Modern Communications 5th edn (Oxford Univ. Press, 1997).

  32. 32

    Marcuse, D. Theory of Dielectric Optical Waveguides 2nd edn (Academic, 1991).

  33. 33

    Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

  34. 34

    Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

  35. 35

    Fan, L. An all-silicon passive optical diode. Science 335, 447–450 (2012).

  36. 36

    Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

  37. 37

    Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

  38. 38

    Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

  39. 39

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech. 10, 937–943 (2015).

  40. 40

    Liu, V., Miller, D. A. B. & Fan, S. Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Opt. Express 20, 28388–28397 (2012).

  41. 41

    Ding, Y. et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express 21, 10376–10382 (2013).

  42. 42

    Dai, D., Wang, J. & Shi, Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett. 38, 1422–1424 (2013).

  43. 43

    Zhang, Y. et al. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photon. 1, 091304 (2016).

  44. 44

    Sacher, W. D., Barwicz, T., Taylor, B. J. F. & Poon, J. K. S. Polarization rotator-splitters in standard active silicon photonics platforms. Opt. Express 22, 3777–3786 (2014).

  45. 45

    Luo, L.-W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 3069 (2014).

  46. 46

    Lee, B.-T. & Shin, S.-Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660–1662 (2003).

  47. 47

    Huang, Y., Xu, G. & Ho, S.-T. An ultracompact optical mode order converter. IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).

  48. 48

    Guan, H. et al. High-efficiency low-crosstalk 1310-nm polarization splitter and rotator. IEEE Photon. Technol. Lett. 26, 925–928 (2014).

  49. 49

    Driscoll, J. B. et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38, 1854–1856 (2013).

  50. 50

    Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

Download references

Acknowledgements

The work was supported by the Air Force Office of Scientific Research (grant no. FA9550-14-1-0389, through a Multidisciplinary University Research Initiative programme), a Defense Advanced Research Projects Agency Young Faculty Award (grant no. D15AP00111) and the National Science Foundation (grant no. ECCS-1307948). The authors acknowledge funding from the Ministry of Defense, Singapore, and from the Defense Threat Reduction Agency (grant no. HDTRA1-13-1-0001). A.C.O. acknowledges support from the NSF IGERT programme (grant no. DGE-1069240). Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-SC0012704). The authors thank M. Lipson, R. Osgood Jr, P.-T. Lin and L. Zhang for discussions.

Author information

Z.L., M.-H.K. and N.Y. conceived and designed the experiments. Z.L., M.K. and C.W. fabricated the devices, with M.L. and A.S.'s assistance. M.K., Z.L., Z.H., C.W., S.S. and A.C.O. performed the measurements and analysed the data, with A.M.A., M.L. and N.Y.'s supervision. Z.L. and M.K. developed theoretical models and conducted numerical simulations, with N.Y.'s supervision. Z.L., M.K. and N.Y. wrote the manuscript, with input from all co-authors. All authors discussed the results and commented on the manuscript.

Correspondence to Nanfang Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3111 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Kim, M., Wang, C. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nature Nanotech 12, 675–683 (2017) doi:10.1038/nnano.2017.50

Download citation

Further reading