Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reproducibility, sharing and progress in nanomaterial databases

Publicly accessible databases are core resources for data-rich research, consolidating field-specific knowledge and highlighting best practices and challenges. Further effective growth of nanomaterial databases requires the concerted efforts of database stewards, researchers, funding agencies and publishers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data cycle in nanomaterials research.
Figure 2: Streamlining and expediting database growth by direct deposition of the experimental data.

References

  1. Madhavan, K. et al. Nanotechnol. Rev. 2, 107–117 (2013).

    Article  Google Scholar 

  2. Morris, S. A., Gaheen, S., Lijowski, M., Heiskanen, M. & Klemm, J. Beilstein J. Nanotechnol. 6, 1580–1593 (2015).

    Article  CAS  Google Scholar 

  3. Mills, K. C., Murry, D., Guzan, K. A. & Ostraat, M. L. J. Nanoparticle Res. 16, 2219 (2014).

    Article  Google Scholar 

  4. Read, K. B. et al. PLoS One 10, e0132735 (2015).

    Article  Google Scholar 

  5. Bourne, P. E., Lorsch, J. R. & Green, E. D. Nature 527, S16–S17 (2015).

    Article  CAS  Google Scholar 

  6. Ostraat, M. L., Mills, K. C., Guzan, K. A. & Murry, D. Int. J. Nanomedicine 8, Suppl. 1, 7–13 (2013).

    CAS  Google Scholar 

  7. Thomas, D. G. et al. BMC Biotechnol. 13, 2 (2013).

    Article  Google Scholar 

  8. Rumble, J., Freiman, S. & Teague, C. Chem. Int. 37, 3–7 (2015).

    Article  CAS  Google Scholar 

  9. Thomas, D. G., Pappu, R. V. & Baker, N. A. J. Biomed. Inform. 44, 59–74 (2011).

    Article  Google Scholar 

  10. Centers of Cancer Nanotechnology Excellence (CCNE) (U54) (NIH, 2014); https://grants.nih.gov/grants/guide/rfa-files/RFA-CA-14-013.html

  11. Nature 515, 7 (2014).

  12. Nat. Nanotech. 9, 949 (2014).

  13. Wilkinson, M. D. et al. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  14. Ostraat, M. L., Mills, K. C. & Guzan, K. A. in 2012 IEEE Int. Conf. on Bioinformatics and Biomedicine Workshops 884–888 (IEEE, 2012); http://dx.doi.org/10.1109/BIBMW.2012.6470258

  15. Liu, R. & Cohen, Y. Beilstein J. Nanotechnol. 6, 2449–51 (2015).

    Article  CAS  Google Scholar 

  16. Fourches, D., Pu, D. & Tropsha, A. Comb. Chem. High Throughput Screen. 14, 217–225 (2011).

    Article  CAS  Google Scholar 

  17. Fourches, D. & Tropsha, A. in Nanotoxicology: Progress toward Nanomedicine (eds Monteiro-Riviere, N. A. & Lang Tran, C.) Ch. 7 (CRC, 2014).

    Google Scholar 

  18. Fourches, D. et al. ACS Nano 4, 5703–5712 (2010).

    Article  CAS  Google Scholar 

  19. Wu, K., Natarajan, B., Morkowchuk, L. & Breneman, C. in Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application (ed. Rajan, K.) 385–422 (Butterworth-Heinemann, 2013).

    Book  Google Scholar 

  20. Suh, C. & Rajan, K. QSAR Comb. Sci. 24, 114–119 (2005).

    Article  CAS  Google Scholar 

  21. Rajan, K. (ed.) Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application (Butterworth-Heinemann, 2013).

    Google Scholar 

  22. Fourches, D. et al. Nanotoxicology 10, 374–83 (2016).

    Article  CAS  Google Scholar 

  23. Oh, E. et al. Nat. Nanotech. 11, 479–86 (2016).

    Article  CAS  Google Scholar 

  24. Berman, H. M. et al. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  25. Bolton, E. E., Wang, Y., Thiessen, P. A. & Bryant, S. H. in Annual Reports in Computational Chemistry Vol. 4, 217–241 (American Chemical Society, 2008).

    Google Scholar 

Download references

Acknowledgements

We thank the National Institute of Biomedical Imaging and Bioengineering, National Institute of Environmental Health Sciences and National Cancer Institute within the National Institutes of Health for funding the development of the Nanomaterials Registry under contract HHSN2682010000022C. In addition, A.T. acknowledges support from NIH grants 5U54CA198999 and U01CA207160.

Author information

Authors and Affiliations

Authors

Contributions

The concept of this manuscript resulted from extensive discussions among all authors who co-wrote and co-edited the entire manuscript.

Corresponding author

Correspondence to Alexander Tropsha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tropsha, A., Mills, K. & Hickey, A. Reproducibility, sharing and progress in nanomaterial databases. Nature Nanotech 12, 1111–1114 (2017). https://doi.org/10.1038/nnano.2017.233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing