Review Article | Published:

High-performance semiconductor quantum-dot single-photon sources

Nature Nanotechnology volume 12, pages 10261039 (2017) | Download Citation

Abstract

Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    & Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).

  2. 2.

    Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).

  3. 3.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  4. 4.

    & Quantum voting and violation of Arrow's impossibility theorem. Phys. Rev. A 95, 062306 (2017).

  5. 5.

    , & Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

  6. 6.

    , & (eds) Quantum imaging. J. Mod. Opt. 53, 5–6 (2006).

  7. 7.

    Universal quantum simulators. Science 273, 1073–1078 (1996).

  8. 8.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  9. 9.

    & On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A. 459, 2011–2032 (2003).

  10. 10.

    Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

  11. 11.

    & Quantum Information, Computation and Communication (Cambridge Univ. Press, 2010).

  12. 12.

    , & Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

  13. 13.

    et al. Universal linear optics. Science 349, 711–716 (2015).

  14. 14.

    , , & Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Photon. 8, 965–970 (2014).

  15. 15.

    , & Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge Univ. Press, 2010).

  16. 16.

    , , & Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000).

  17. 17.

    et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

  18. 18.

    et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

  19. 19.

    et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

  20. 20.

    et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

  21. 21.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  22. 22.

    et al. Efficient detection of an ultra-bright single-photon source using superconducting nanowire single-photon detectors. Opt. Commun. 336, 47–54 (2015).

  23. 23.

    et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

  24. 24.

    & Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

  25. 25.

    & Observation of a nonclassical Berry's phase for the photon. Phys. Rev. Lett. 66, 588–591 (1991).

  26. 26.

    et al. High-quality asynchronous heralded single-photon source at telecom wavelength. New J. Phys. 6, 163 (2004).

  27. 27.

    et al. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100–23107 (2012).

  28. 28.

    , & Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

  29. 29.

    , , , & Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999).

  30. 30.

    , , & Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93, 093601 (2004).

  31. 31.

    et al. An optimized photon pair source for quantum circuits. Opt. Express 21, 13975–31985 (2013).

  32. 32.

    et al. Parametric downconversion and optical quantum gates: two's company, four's a crowd. J. Mod. Opt. 56, 209–214 (2009).

  33. 33.

    et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

  34. 34.

    et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  35. 35.

    Effects of frequency correlation in linear optical entangling gates operated with independent photons. Phys. Rev. A 76, 043825 (2007).

  36. 36.

    , , , & Engineered optical nonlinearity for quantum light sources. Opt. Express 19, 55–65 (2011).

  37. 37.

    et al. Efficient and pure femtosecond-pulse-length source of polarization-entangled photons. Opt. Express 24, 10869–10879 (2016).

  38. 38.

    , & Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

  39. 39.

    et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun. 7, 10853 (2016).

  40. 40.

    et al. Active temporal and spatial multiplexing of photons. Optica 3, 127–132 (2016).

  41. 41.

    , & Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

  42. 42.

    & Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 2013–2016 (1987).

  43. 43.

    , , & Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

  44. 44.

    et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

  45. 45.

    , , , & Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).

  46. 46.

    et al. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett. 81, 2920–2922 (2002).

  47. 47.

    et al. Correlated photon emission from a single II–VI quantum dot. Appl. Phys. Lett. 85, 6251–6253 (2004).

  48. 48.

    , , , & Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014).

  49. 49.

    et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

  50. 50.

    et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

  51. 51.

    , , , & Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Photon. 5, 301–305 (2011).

  52. 52.

    et al. Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photon. 1, 020801 (2016).

  53. 53.

    et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotech. 7, 69–74 (2012).

  54. 54.

    , , & Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals. Nat. Commun. 6, 8206 (2015).

  55. 55.

    et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotech. 10, 503–506 (2015).

  56. 56.

    et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotech. 10, 491–496 (2015).

  57. 57.

    , , , & Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotech. 10, 507–511 (2015).

  58. 58.

    et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotech. 10, 497–502 (2015).

  59. 59.

    , & Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

  60. 60.

    , , , & Growth by molecular beam epitaxy and characterization of InAs/GaAs strained layer superlattices. Appl. Phys. Lett. 47, 1099–1101 (1985).

  61. 61.

    , & in Science and Technology of Mesoscopic Structures (eds Namba, S. et al.) 379–384 (Springer, 1992).

  62. 62.

    , , , & Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 63, 3203–3205 (1993).

  63. 63.

    , & Effects of monolayer coverage, flux ratio, and growth rate on the island density of InAs islands on GaAs. Appl. Phys. Lett. 66, 3161–3163 (1995).

  64. 64.

    , & Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs. Appl. Phys. Lett. 66, 991–993 (1995).

  65. 65.

    , , & Atom-resolved scanning tunneling microscopy of vertically ordered InAs quantum dots. Appl. Phys. Lett. 71, 1083–1085 (1997).

  66. 66.

    , , , & Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).

  67. 67.

    , , & Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots. Appl. Phys. Lett. 65, 1388–1390 (1994).

  68. 68.

    , & Frabrication of GaAs quantum dots by modified droplet epitaxy. Jpn J. Appl. Phys. 39, L79–L81 (2000).

  69. 69.

    et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of Bell's inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306 (2013).

  70. 70.

    (ed.) Lateral Alignment of Epitaxial Quantum Dots (Springer-Verlag, 2007).

  71. 71.

    et al. Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology 20, 434012 (2009).

  72. 72.

    et al. Directed self-assembly of single quantum dots for telecommunication wavelength optical devices. Laser Photon. Rev. 4, 283–299 (2010).

  73. 73.

    et al. Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 6, 1268–1272 (2010).

  74. 74.

    et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 6, 947–950 (2010).

  75. 75.

    et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).

  76. 76.

    et al. Quantum interference of electrically generated single photons from a quantum dot. Nanotechnology 21, 274011 (2010).

  77. 77.

    et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

  78. 78.

    et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

  79. 79.

    , , & Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot. Phys. Rev. B 65, 073310 (2002).

  80. 80.

    , , & Emission spectrum of a dressed exciton–biexciton complex in a semiconductor quantum dot. Phys. Rev. Lett. 101, 027401 (2008).

  81. 81.

    et al. Resonant excitonic emission of a single quantum dot in the Rabi regime. Phys. Rev. B 78, 073301 (2008).

  82. 82.

    et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013).

  83. 83.

    et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8, 213–217 (2013).

  84. 84.

    , , , & On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

  85. 85.

    et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

  86. 86.

    , , & Dynamics of nonclassical light from a single solid-state quantum emitter. Phys. Rev. Lett. 109, 163601 (2012).

  87. 87.

    et al. Influence of the Purcell effect on the purity of bright single photon sources. Appl. Phys. Lett. 103, 033113 (2013).

  88. 88.

    et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515–6519 (2014).

  89. 89.

    et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

  90. 90.

    et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt. Express 24, 8539–8546 (2016).

  91. 91.

    , , & Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

  92. 92.

    et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29–29 (2006).

  93. 93.

    et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

  94. 94.

    , , , & Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 7, 527–531 (2013).

  95. 95.

    Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots. Phys. Rev. B 73, 033306 (2006).

  96. 96.

    et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015).

  97. 97.

    , , & Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

  98. 98.

    , , , & Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett. 14, 3439–3444 (2014).

  99. 99.

    , & Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

  100. 100.

    , , , & Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

  101. 101.

    et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

  102. 102.

    et al. Efficient acoustic phonon broadening in single self-assembled InAs/GaAs quantum dots. Phys. Rev. B 65, 033313 (2001).

  103. 103.

    Decoherence in quantum dots due to real and virtual transitions: a nonperturbative calculation. Phys. Rev. B 80, 245310 (2009).

  104. 104.

    et al. exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).

  105. 105.

    et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

  106. 106.

    et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys. 2, 759–764 (2006).

  107. 107.

    et al. Restoration of photon indistinguishability in the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005).

  108. 108.

    et al. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett. 118, 253602 (2017).

  109. 109.

    , , & Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).

  110. 110.

    et al. Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots. Phys. Rev. B 68, 233301 (2003).

  111. 111.

    Decoherence in semiconductor cavity QED systems due to phonon couplings. Phys. Rev. B 90, 035312 (2014).

  112. 112.

    et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013).

  113. 113.

    et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

  114. 114.

    et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

  115. 115.

    , & Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

  116. 116.

    Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys. Rev. B 93, 195316 (2016).

  117. 117.

    et al. Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015).

  118. 118.

    et al. Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016).

  119. 119.

    et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

  120. 120.

    et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

  121. 121.

    , & Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

  122. 122.

    et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

  123. 123.

    Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

  124. 124.

    & Cavity quantum electrodynamics. Phys. Today 42, 24–30 (2008).

  125. 125.

    , & Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett. 86, 3903–3906 (2001).

  126. 126.

    et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 3932–3934 (2001).

  127. 127.

    et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

  128. 128.

    et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

  129. 129.

    et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

  130. 130.

    et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

  131. 131.

    , , & Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007).

  132. 132.

    et al. Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000. Appl. Phys. Lett. 100, 111111 (2012).

  133. 133.

    , , , & Quantum dot micropillar cavities with quality factors exceeding 250,000. Appl. Phys. B 122, 19 (2016).

  134. 134.

    et al. High-quality factor optical microcavities using oxide apertured micropillars. Appl. Phys. Lett. 87, 031105 (2005).

  135. 135.

    et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

  136. 136.

    et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007).

  137. 137.

    et al. Electrically driven quantum dot–micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010).

  138. 138.

    et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys. Rev. B 92, 161302 (2015).

  139. 139.

    et al. Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. Phys. Rev. Lett. 108, 057402 (2012).

  140. 140.

    et al. Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity. Appl. Phys. Lett. 87, 163107 (2005).

  141. 141.

    et al. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity. Phys. Rev. B 90, 155303 (2014).

  142. 142.

    et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

  143. 143.

    et al. Giant Stark effect in the emission of single semiconductor quantum dots. Appl. Phys. Lett. 97, 031104 (2010).

  144. 144.

    et al. Electrically driven high-Q quantum dot–micropillar cavities. Appl. Phys. Lett. 92, 091107 (2008).

  145. 145.

    et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).

  146. 146.

    et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

  147. 147.

    et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

  148. 148.

    et al. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012).

  149. 149.

    et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012).

  150. 150.

    et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett. 14, 4102–4106 (2014).

  151. 151.

    et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

  152. 152.

    et al. A diamond nanowire single-photon source. Nat. Nanotech. 5, 195–199 (2010).

  153. 153.

    et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011).

  154. 154.

    et al. Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Appl. Phys. Lett. 100, 061122 (2012).

  155. 155.

    et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).

  156. 156.

    et al. Single photon source using confined Tamm plasmon modes. Appl. Phys. Lett. 100, 232111 (2012).

  157. 157.

    et al. Enhanced photon extraction from a quantum dot induced by a silver microcolumnar photon reflector. Appl. Phys. Express 6, 062801 (2013).

  158. 158.

    , , & Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015).

  159. 159.

    et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl. Phys. Lett. 102, 251113 (2013).

  160. 160.

    et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

  161. 161.

    et al. Bright phonon-tuned single-photon source. Nano Lett. 15, 6290–6294 (2015).

  162. 162.

    et al. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys. Rev. Lett. 110, 250501 (2013).

  163. 163.

    et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

  164. 164.

    et al. Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength. Appl. Phys. Express 3, 092802 (2010).

  165. 165.

    et al. Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Appl. Phys. Lett. 100, 091108 (2012).

  166. 166.

    et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

  167. 167.

    et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

  168. 168.

    et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

  169. 169.

    et al. Single-color, in situ photolithography marking of individual CdTe/ZnTe quantum dots containing a single Mn2+ ion. Appl. Phys. Lett. 106, 012101 (2015).

  170. 170.

    et al. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Sci. Rep. 7, 39916 (2017).

  171. 171.

    et al. Scalable implementation of strongly coupled cavity-quantum dot devices. Appl. Phys. Lett. 94, 121102 (2009).

  172. 172.

    et al. Registration of single quantum dots using cryogenic laser photolithography. Appl. Phys. Lett. 88, 193106 (2006).

  173. 173.

    et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl. Phys. Lett. 94, 111115 (2009).

  174. 174.

    et al. Stable fiber-based Fabry-Pérot cavity. Appl. Phys. Lett. 89, 111110 (2006).

  175. 175.

    , , , & Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity. Appl. Phys. Lett. 95, 173101 (2009).

  176. 176.

    et al. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry–Perot cavity. New J. Phys. 15, 045002 (2013).

  177. 177.

    et al. A small mode volume tunable microcavity: development and characterization. Appl. Phys. Lett. 105, 121105 (2014).

  178. 178.

    & in Quantum Metrology: Foundation of Units and Measurements 191–206 (Wiley-VCH, 2015).

  179. 179.

    , , & “Interaction-free” imaging. Phys. Rev. A 58, 605–613 (1998).

  180. 180.

    et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

  181. 181.

    et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon. 4, 632–635 (2010).

  182. 182.

    et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

  183. 183.

    , , , & Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photon. 5, 230–233 (2011).

  184. 184.

    , , , & Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016).

  185. 185.

    et al. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015).

  186. 186.

    et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

  187. 187.

    et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012).

  188. 188.

    et al. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Opt. Express 20, 27510 (2012).

  189. 189.

    & Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

  190. 190.

    in Single-Photon Generation and Detection (eds Migdall, A. et al.) Vol. 45 25–68 (Academic Press, 2013).

Download references

Acknowledgements

P.S. acknowledges partial support from the ERC Starting Grant No. 277885 QD-CQED. A.W. acknowledges partial support from the Australian Research Centres of Excellence for Engineered Quantum Systems (CE110001013) and Quantum Computing and Communication Technology (CE110001027). G.S. acknowledges partial support from the PFC@JQI.

Author information

Affiliations

  1. Center for Nanosciences and Nanotechnology CNRS, UMR9001, University Paris-Saclay, C2N – Site de Marcoussis, Route de Nozay, 91460 Marcoussis, France

    • Pascale Senellart
  2. Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland 20889, USA

    • Glenn Solomon
  3. Centre for Engineered Quantum Systems and Centre for Quantum Computer and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia

    • Andrew White

Authors

  1. Search for Pascale Senellart in:

  2. Search for Glenn Solomon in:

  3. Search for Andrew White in:

Competing interests

P.S. is co-founder and scientific advisor of the single-photon-source company Quandela.

Corresponding author

Correspondence to Pascale Senellart.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2017.218