Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity


Monolayer transition-metal dichalcogenides (TMDs) have the potential to become efficient optical-gain materials for low-energy-consumption nanolasers with the smallest gain media because of strong excitonic emission. However, until now TMD-based lasing has been realized only at low temperatures. Here we demonstrate for the first time a room-temperature laser operation in the infrared region from a monolayer of molybdenum ditelluride on a silicon photonic-crystal cavity. The observation is enabled by the unique combination of a TMD monolayer with an emission wavelength transparent to silicon, and a high-Q cavity of the silicon nanobeam. The laser is pumped by a continuous-wave excitation, with a threshold density of 6.6 W cm–2. Its linewidth is as narrow as 0.202 nm with a corresponding Q of 5,603, the largest value reported for a TMD laser. This demonstration establishes TMDs as practical materials for integrated TMD–silicon nanolasers suitable for silicon-based nanophotonic applications in silicon-transparent wavelengths.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Monolayer MoTe2 and silicon photonic crystal nanobeam cavity.
Figure 2: Design and optical modes of the photonic crystal nanobeam cavity.
Figure 3: Room-temperature emission.
Figure 4: Lasing characteristics at room temperature.


  1. 1

    Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotech. 9, 268–272 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  6. 6

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  8. 8

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Yang, J. et al. Robust excitons and trions in monolayer MoTe2 . ACS Nano 9, 6603–6609 (2015).

    CAS  Article  Google Scholar 

  10. 10

    He, K. et al. Tightly bound excitons in monolayer WSe2 . Phys. Rev. Lett. 113, 026803 (2014).

    Article  Google Scholar 

  11. 11

    Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589–594 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Ding, K. et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B 85, 041301 (2012).

    Article  Google Scholar 

  15. 15

    Ding, K. et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21, 4728–4733 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Lu, Y.-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Ning, C. Z. Semiconductor nanolasers. Phys. Status Solidi B 247, 774–788 (2010).

    CAS  Google Scholar 

  20. 20

    Jeong, K.-Y. et al. Electrically driven nanobeam laser. Nat. Commun. 4, 2822 (2013).

    Article  Google Scholar 

  21. 21

    Ding, K., Diaz, J. O., Bimberg, D. & Ning, C. Z. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects. Laser Photon. Rev. 9, 488–497 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Salehzadeh, O., Djavid, M., Tran, N. H., Shih, I. & Mi, Z. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 15, 5302–5306 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Reed, J. C., Zhu, A. Y., Zhu, H., Yi, F. & Cubukcu, E. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett. 15, 1967–1971 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Deotare, P. B., McCutcheon, M. W., Frank, I. W., Khan, M. & Lončar, M. High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009).

    Article  Google Scholar 

  25. 25

    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    Article  Google Scholar 

  26. 26

    Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. Res. Appl. 3, 189–192 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Hull, R. Properties of Crystalline Silicon (IET, 1999).

    Google Scholar 

  29. 29

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    CAS  Article  Google Scholar 

  30. 30

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    CAS  Article  Google Scholar 

  31. 31

    Foresi, J. S. et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Notomi, M., Kuramochi, E. & Taniyama, H. Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express 16, 11095–11102 (2008).

    CAS  Article  Google Scholar 

  33. 33

    M. d Zain, A. R., Johnson, N. P., Sorel, M. & De La Rue, R. M. Design and fabrication of high quality-factor 1-D photonic crystal/photonic wire extended microcavities. IEEE Photon. Technol. Lett. 22, 610–612 (2010).

    Article  Google Scholar 

  34. 34

    Koirala, S., Mouri, S., Miyauchi, Y. & Matsuda, K. Homogeneous linewidth broadening and exciton dephasing mechanism in MoTe2 . Phys. Rev. B 93, 075411 (2016).

    Article  Google Scholar 

  35. 35

    Ning, C. Z. What is laser threshold? IEEE J. Sel. Top. Quantum Electron. 19, 1503604 (2013).

    Article  Google Scholar 

  36. 36

    Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Article  Google Scholar 

  37. 37

    Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN∕AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  Google Scholar 

Download references


This research is supported by the 985 University Project of China and Tsinghua University Initiative Scientific Research Program (No. 20141081296). The authors thank Y. Huang for the usage of their fabrication equipment.

Author information




C.Z.N. initiated the research on the silicon-based monolayer MoTe2 lasers, and supervised the overall project. Y.L. developed the simulations and design of the devices. Y.L., J.Z., D.H. and J.F. exfoliated monolayer MoTe2 from the bulk material. Y.L., J.Z. and D.H. fabricated the devices. Y.L., J.Z., H.S. and F.F. performed the optical measurements and data analysis. J.Z. and Z.W. carried out the laser equation fitting. Y.L. and C.Z.N. analysed data and wrote the manuscript. All the authors participated in the discussions.

Corresponding author

Correspondence to C. Z. Ning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1204 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, J., Huang, D. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotech 12, 987–992 (2017).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research