Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes

Abstract

Water shortages and brine waste management are increasing challenges for coastal and inland regions, with high-salinity brines presenting a particularly challenging problem. These high-salinity waters require the use of thermally driven treatment processes, such as membrane distillation, which suffer from high complexity and cost. Here, we demonstrate how controlling the frequency of an applied alternating current at high potentials (20 Vpp) to a porous thin-film carbon nanotube (CNT)/polymer composite Joule heating element can prevent CNT degradation in ionizable environments such as high-salinity brines. By operating at sufficiently high frequencies, these porous thin-films can be directly immersed in highly ionizable environments and used as flow-through heating elements. We demonstrate that porous CNT/polymer composites can be used as self-heating membranes to directly heat high-salinity brines at the water/vapour interface of the membrane distillation element, achieving high single-pass recoveries that approach 100%, far exceeding standard membrane distillation recovery limits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Comparison of classical and directly heated membrane distillation.
Figure 2: Spray-coated CNT–PVA porous self-heating films on PTFE supports.
Figure 3: Stability of CNT films under different electrical conditions.
Figure 4: Demonstration of direct surface heating for brine desalination using MD.

References

  1. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  2. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  Google Scholar 

  3. Fritzmann, C., Löwenberg, J., Wintgens, T. & Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 216, 1–76 (2007).

    Article  CAS  Google Scholar 

  4. Eykens, L. et al. Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. J. Membr. Sci. 498, 353–364 (2016).

    Article  CAS  Google Scholar 

  5. Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).

    Article  CAS  Google Scholar 

  6. Mundhenk, N., Huttenloch, P., Kohl, T., Steger, H. & Zorn, R. Metal corrosion in geothermal brine environments of the Upper Rhine graben – laboratory and on-site studies. Geothermics 46, 14–21 (2013).

    Article  CAS  Google Scholar 

  7. Jang, H.-S., Jeon, S. K. & Nahm, S. H. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 49, 111–116 (2011).

    Article  CAS  Google Scholar 

  8. Janas, D. & Koziol, K. K. Rapid electrothermal response of high-temperature carbon nanotube film heaters. Carbon 59, 457–463 (2013).

    Article  CAS  Google Scholar 

  9. Wu, Z. P. & Wang, J. N. Preparation of large-area double-walled carbon nanotube films and application as film heater. Physica E 42, 77–81 (2009).

    Article  CAS  Google Scholar 

  10. Jung, D., Kim, D., Lee, K. H., Overzet, L. J. & Lee, G. S. Transparent film heaters using multi-walled carbon nanotube sheets. Sens. Actuat. Phys. 199, 176–180 (2013).

    Article  CAS  Google Scholar 

  11. Gupta, R., Rao, K. D. M., Kiruthika, S. & Kulkarni, G. U. Visibly transparent heaters. ACS Appl. Mater. Interfaces 8, 12559–12575 (2016).

    Article  CAS  Google Scholar 

  12. Kang, T. J., Kim, T., Seo, S. M., Park, Y. J. & Kim, Y. H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 49, 1087–1093 (2011).

    Article  CAS  Google Scholar 

  13. Jyoti, G., Keshav, A. & Anandkumar, J. Review on pervaporation: theory, membrane performance, and application to intensification of esterification reaction. J. Eng. 2015, 1–24 (2015).

    Article  Google Scholar 

  14. Ong, Y. K. et al. Recent membrane development for pervaporation processes. Prog. Polym. Sci. 57, 1–31 (2016).

    Article  CAS  Google Scholar 

  15. Saeidi, S., Amin, N. A. S. & Rahimpour, M. R. Hydrogenation of CO2 to value-added products—a review and potential future developments. J. CO2 Util. 5, 66–81 (2014).

    Article  CAS  Google Scholar 

  16. Jadhav, S. G., Vaidya, P. D., Bhanage, B. M. & Joshi, J. B. Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem. Eng. Res. Des. 92, 2557–2567 (2014).

    Article  CAS  Google Scholar 

  17. Honig, R. E. Ionization potentials of some hydrocarbon series. J. Chem. Phys. 16, 105–112 (1948).

    Article  CAS  Google Scholar 

  18. Parker, V. D. Energetics of electrode reactions. II. The relationship between redox potentials, ionization potentials, electron affinities, and solvation energies of aromatic hydrocarbons. J. Am. Chem. Soc. 98, 98–103 (1976).

    Article  CAS  Google Scholar 

  19. Liu, P., Liu, L., Jiang, K. & Fan, S. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 7, 732–736 (2011).

    Article  CAS  Google Scholar 

  20. Zhang, Q., Huang, J.-Q., Qian, W.-Z., Zhang, Y.-Y. & Wei, F. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9, 1237–1265 (2013).

    Article  CAS  Google Scholar 

  21. Dudchenko, A. V., Rolf, J., Russell, K., Duan, W. & Jassby, D. Organic fouling inhibition on electrically conducting carbon nanotube–polyvinyl alcohol composite ultrafiltration membranes. J. Membr. Sci. 468, 1–10 (2014).

    Article  CAS  Google Scholar 

  22. de Lannoy, C., Jassby, D., Davis, D. D. & Wiesner, M. R. A highly electrically conductive polymer–multiwalled carbon nanotube nanocomposite membrane. J. Membr. Sci. 415–416, 718–724 (2012).

    Article  Google Scholar 

  23. Duan, W., Ronen, A., Walker, S. & Jassby, D. Polyaniline-coated carbon nanotube ultrafiltration membranes: enhanced anodic stability for in situ cleaning and electro-oxidation processes. ACS Appl. Mater. Interfaces 8, 22574–22584 (2016).

    Article  CAS  Google Scholar 

  24. Liu, H., Vajpayee, A. & Vecitis, C. D. Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation. ACS Appl. Mater. Interfaces 5, 10054–10066 (2013).

    Article  CAS  Google Scholar 

  25. Janas, D., Kreft, S. K., Boncel, S. & Koziol, K. K. K. Durability and surface chemistry of horizontally aligned CNT films as electrodes upon electrolysis of acidic aqueous solution. J. Mater. Sci. 49, 7231–7243 (2014).

    Article  CAS  Google Scholar 

  26. Bagotsky, V. S. Fundamentals of Electrochemistry (John Wiley & Sons, 2005).

    Book  Google Scholar 

  27. Weber, B. et al. Ohm's law survives to the atomic scale. Science 335, 64–67 (2012).

    Article  CAS  Google Scholar 

  28. Verwey, E. & Overbeek, T. Theory of Stabilty of Lyophobic Colloids (Elsievier, 1948).

    Google Scholar 

  29. Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75, 021503 (2007).

    Article  Google Scholar 

  30. Barsoukov, E. & Ross Macdonald, J. (eds) Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley-Interscience, 2005).

    Book  Google Scholar 

  31. Ayliffe, H. E., Frazier, A. B. & Rabbitt, R. D. Electric impedance spectroscopy using microchannels with integrated metal electrodes. J. Microelectromech. Syst. 8, 50–57 (1999).

    Article  Google Scholar 

  32. Randles, J. E. B. Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1, 11–19 (1947).

    Article  Google Scholar 

  33. Lin, S., Yip, N. Y. & Elimelech, M. Direct contact membrane distillation with heat recovery: thermodynamic insights from module scale modeling. J. Membr. Sci. 453, 498–515 (2014).

    Article  CAS  Google Scholar 

  34. He, F., Gilron, J. & Sirkar, K. K. High water recovery in direct contact membrane distillation using a series of cascades. Desalination 323, 48–54 (2013).

    Article  CAS  Google Scholar 

  35. Baloch, K. H., Voskanian, N., Bronsgeest, M. & Cumings, J. Remote Joule heating by a carbon nanotube. Nat. Nanotech. 7, 316–319 (2012).

    Article  CAS  Google Scholar 

  36. Kaatze, U. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data 34, 371–374 (1989).

    Article  CAS  Google Scholar 

  37. Zuo, G., Wang, R., Field, R. & Fane, A. G. Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus. Desalination 283, 237–244 (2011).

    Article  CAS  Google Scholar 

  38. Saffarini, R. B., Summers, E. K., Arafat, H. A. & Lienhard V, J. H. Technical evaluation of stand-alone solar powered membrane distillation systems. Desalination 286, 332–341 (2012).

    Article  CAS  Google Scholar 

  39. Summers, E. K., Arafat, H. A. & Lienhard, J. H. Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination 290, 54–66 (2012).

    Article  CAS  Google Scholar 

  40. Criscuoli, A., Carnevale, M. C. & Drioli, E. Evaluation of energy requirements in membrane distillation. Chem. Eng. Process. Process Intensif. 47, 1098–1105 (2008).

    Article  CAS  Google Scholar 

  41. Guillén-Burrieza, E. et al. Experimental analysis of an air gap membrane distillation solar desalination pilot system. J. Membr. Sci. 379, 386–396 (2011).

    Article  Google Scholar 

  42. Winter, D., Koschikowski, J. & Wieghaus, M. Desalination using membrane distillation: experimental studies on full scale spiral wound modules. J. Membr. Sci. 375, 104–112 (2011).

    Article  CAS  Google Scholar 

  43. Gingerich, D. B. & Mauter, M. S. Quantity, quality, and availability of waste heat from United States thermal power generation. Environ. Sci. Technol. 49, 8297–8306 (2015).

    Article  CAS  Google Scholar 

  44. Logg, A., Mardal, K.-A. & Wells G. N. (eds) Automated Solution of Differential Equations by the Finite Element Method (Lecture Notes in Computational Science and Engineering 84, Springer, 2012).

    Book  Google Scholar 

  45. Lackovic, I., Magjarevic, R. & Miklavcic, D. Three-dimensional finite-element analysis of Joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Trans. Dielectr. Electr. Insul. 16, 1338–1347 (2009).

    Article  CAS  Google Scholar 

  46. Girault, V. & Raviart, P.-A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (Springer, 1986).

    Book  Google Scholar 

  47. Sharqawy, M. H., Lienhard, J. H. & Zubair, S. M. Thermophysical properties of seawater: a review of existing correlations and data. Desalination Water Treat. 16, 354–380 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the funding from the Integrative Graduate Education and Research Traineeship: water sense—water social, engineering, and natural sciences engagement program (award abstract no. 1144635), ACS Petroleum Research Fund (54649-dni9), and the Office of Naval Research (n00014-14-1-0809). In addition, this work was undertaken in collaboration with the US Department of Energy's National Renewable Energy Laboratory (NREL) with funding under subcontract XEU-6-62543-01 and prime contract DE-AC36-08GO28308.

Author information

Authors and Affiliations

Authors

Contributions

D.J. and A.V.D. conceived the idea, designed the experiments and wrote the manuscript. A.V.D. performed experiments, data analysis, EIS fitting and FEM simulations. C.C., A.C. and J.R. assisted in material synthesis and characterization.

Corresponding author

Correspondence to David Jassby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 892 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dudchenko, A., Chen, C., Cardenas, A. et al. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nature Nanotech 12, 557–563 (2017). https://doi.org/10.1038/nnano.2017.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.102

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research