Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale

Abstract

Annexins are abundant cytoplasmic proteins that can bind to negatively charged phospholipids in a Ca2+-dependent manner, and are known to play a role in the storage of Ca2+ and membrane healing. Little is known, however, about the dynamic processes of protein–Ca2+–membrane assembly and disassembly. Here we show that high-speed atomic force microscopy (HS-AFM) can be used to repeatedly induce and disrupt annexin assemblies and study their structure, dynamics and interactions. Our HS-AFM set-up is adapted for such biological applications through the integration of a pumping system for buffer exchange and a pulsed laser system for uncaging caged compounds. We find that biochemically identical annexins (annexin V) display different effective Ca2+ and membrane affinities depending on the assembly location, providing a wide Ca2+ buffering regime while maintaining membrane stabilization. We also show that annexin is membrane-recruited and forms stable supramolecular assemblies within 5 s in conditions that are comparable to a membrane lesion in a cell. Molecular dynamics simulations provide atomic detail of the role played by Ca2+ in the reversible binding of annexin to the membrane surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of 2D A5 arrays grown in the presence of 2 mM Ca2+ on a lipid bilayer containing 20% negatively charged PS.
Figure 2: Rotational freedom of the non-p6 A5 trimers.
Figure 3: Bio-enhanced HS-AFM featuring a fluid exchange pumping system and an optical pathway for pulsed UV laser uncaging of caged compounds.
Figure 4: Controlled buffer modifications allow detailed analysis of the A5–Ca2+–membrane interaction.
Figure 5: A5 Ca2+-mediated buffering and apparent assembly-related Ca2+ affinity.
Figure 6: Molecular dynamics simulations of A5 binding to the surface of a DOPC:DOPS bilayer.

Similar content being viewed by others

References

  1. Gerke, V. & Moss, S. E. Annexins: from structure to function. Physiol. Rev. 82, 331–371 (2002).

    Article  CAS  Google Scholar 

  2. Gauer Jacob, W. et al. Membrane modulates affinity for calcium ion to create an apparent cooperative binding response by annexin a5. Biophys. J. 104, 2437–2447 (2013).

    Article  CAS  Google Scholar 

  3. Lizarbe, M., Barrasa, J., Olmo, N., Gavilanes, F. & Turnay, J. Annexin-phospholipid interactions. Functional implications. Int. J. Mol. Sci. 14, 2652–2683 (2013).

    Article  CAS  Google Scholar 

  4. Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics. Nature Rev. Mol. Cell Biol. 6, 449–461 (2005).

    Article  CAS  Google Scholar 

  5. Bouter, A. et al. Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nature Commun. 2, 274–279 (2011).

    Article  Google Scholar 

  6. McNeil, A. K., Rescher, U., Gerke, V. & McNeil, P. L. Requirement for annexin A1 in plasma membrane repair. J. Biol. Chem. 281, 35202–35207 (2006).

    Article  CAS  Google Scholar 

  7. Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutellingsperger, C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immun. Meth. 184, 39–51 (1995).

    Article  CAS  Google Scholar 

  8. Bewley, M. C., Boustead, C. M., Walker, J. H., Waller, D. A. & Huber, R. Structure of chicken annexin-V at 2.25-A resolution. Biochemistry 32, 3923–3929 (1993).

    Article  CAS  Google Scholar 

  9. Meers, P. in Annexins: Molecular Structure to Cellular Function (ed. Seaton, B. A.) 97–119 (RG Landes Company, 1996).

    Google Scholar 

  10. Concha, N. O., Head, J. F., Kaetzel, M. A., Dedman, J. R. & Seaton, B. A. Annexin V forms calcium-dependent trimeric units on phospholipid vesicles. FEBS Lett. 314, 159–162 (1992).

    Article  CAS  Google Scholar 

  11. Voges, D. et al. Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J. Mol. Biol. 238, 199–213 (1994).

    Article  CAS  Google Scholar 

  12. Mosser, G., Ravanat, C., Freyssinet, J. M. & Brisson, A. Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis. J. Mol. Biol. 217, 241–245 (1991).

    Article  CAS  Google Scholar 

  13. Brisson, A., Olofsson, A., Ringler, P., Schmutz, M. & Stoyla, S. Two-dimensional crystallization of proteins on planar lipid films and structure determination by electron crystallography. Biol. Cell. 80, 221–228 (1994).

    CAS  Google Scholar 

  14. Oling, F., Bergsma-Schutter, W. & Brisson, A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin A5 two-dimensional crystals. J. Struct. Biol. 133, 55–63 (2001).

    Article  CAS  Google Scholar 

  15. Reviakine, I., Bergsma-Schutter, W. & Brisson, A. Growth of protein 2-D crystals on supported planar lipid bilayers imaged in situ by AFM. J. Struct. Biol. 121, 356–361 (1998).

    Article  CAS  Google Scholar 

  16. Pigault, C., Follenius-Wund, A., Schmutz, M., Freyssinet, J.-M. & Brisson, A. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J. Mol. Biol. 236, 199–208 (1994).

    Article  CAS  Google Scholar 

  17. Langen, R., Isas, J. M., Luecke, H., Haigler, H. T. & Hubbell, W. L. Membrane-mediated assembly of annexins studied by site-directed spin labeling. J. Biol. Chem. 273, 22453–22457 (1998).

    Article  CAS  Google Scholar 

  18. Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  Google Scholar 

  19. Ando, T., Uchihashi, T. & Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev. 114, 3120–3188 (2014).

    Article  CAS  Google Scholar 

  20. Patel, D. R. et al. The conserved core domains of annexins A1, A2, A5, and B12 can be divided into two groups with different Ca2+-dependent membrane-binding properties. Biochemistry 44, 2833–2844 (2005).

    Article  CAS  Google Scholar 

  21. Casuso, I. et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nature Nanotech. 7, 525–529 (2012).

    Article  CAS  Google Scholar 

  22. Kaplan, J. H. & Ellis-Davies, G. C. Photolabile chelators for the rapid photorelease of divalent cations. Proc. Natl Acad. Sci. USA 85, 6571–6575 (1988).

    Article  CAS  Google Scholar 

  23. Husain, M., Boudier, T., Paul-Gilloteaux, P., Casuso, I. & Scheuring, S. Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series. J. Mol. Rec. 25, 292–298 (2012).

    Article  CAS  Google Scholar 

  24. Yamamoto, D., Uchihashi, T., Kodera, N. & Ando, T. Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology 19, 384009 (2008).

    Article  Google Scholar 

  25. Fechner, P. et al. Structural information, resolution, and noise in high-resolution atomic force microscopy topographs. Biophys. J. 96, 3822–3831 (2009).

    Article  CAS  Google Scholar 

  26. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  27. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102, 3586–3616 (1998).

    Article  CAS  Google Scholar 

  28. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 114, 7830–7843 (2010).

    Article  CAS  Google Scholar 

  29. Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    Article  CAS  Google Scholar 

  30. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the shake and rattle algorithm for rigid water models. J. Comp. Chem. 13, 952–962 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Haigler for sharing insights in annexin biophysics and structural biology and for valuable comments on the manuscript, and A. Karner for assistance with the setting up of the fluid exchange system. This work was funded by the ANR grants ANR-Nano (ANR-12-BS10-009-01) and ANR-BBMS (ANR-12-BSV8-0006-01) and a European Research Council (ERC) Grant (No. 310080). The GENCI and CINES, Montpellier, France, are acknowledged for the provision of computer time.

Author information

Authors and Affiliations

Authors

Contributions

S.S., A.M and C.C conceived and designed the experiments. A.M., C.C. and M.R. performed the experiments. S.S., C.C and A.M analysed the data. S.S., C.C and A.M wrote the paper.

Corresponding author

Correspondence to Simon Scheuring.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 435 kb)

Supplementary information

Supplementary Movie 1 (GIF 4602 kb)

Supplementary information

Supplementary Movie 2 (GIF 6342 kb)

Supplementary information

Supplementary Movie 3 (GIF 1283 kb)

Supplementary information

Supplementary Movie 4 (GIF 50128 kb)

Supplementary information

Supplementary Movie 5 (GIF 50957 kb)

Supplementary information

Supplementary Movie 6 (GIF 27022 kb)

Supplementary information

Supplementary Movie 7 (GIF 56262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagi, A., Chipot, C., Rangl, M. et al. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nature Nanotech 11, 783–790 (2016). https://doi.org/10.1038/nnano.2016.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing