Programmable artificial phototactic microswimmer

Abstract

Phototaxis is commonly observed in motile photosynthetic microorganisms. For example, green algae are capable of swimming towards a light source (positive phototaxis) to receive more energy for photosynthesis, or away from a light source (negative phototaxis) to avoid radiation damage or to hide from predators. Recently, with the aim of applying nanoscale machinery to biomedical applications, various inorganic nanomotors based on different propulsion mechanisms have been demonstrated. The only method to control the direction of motion of these self-propelled micro/nanomotors is to incorporate a ferromagnetic material into their structure and use an external magnetic field for steering. Here, we show an artificial microswimmer that can sense and orient to the illumination direction of an external light source. Our microswimmer is a Janus nanotree containing a nanostructured photocathode and photoanode at opposite ends that release cations and anions, respectively, propelling the microswimmer by self-electrophoresis. Using chemical modifications, we can control the zeta potential of the photoanode and program the microswimmer to exhibit either positive or negative phototaxis. Finally, we show that a school of microswimmers mimics the collective phototactic behaviour of green algae in solution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic design and structure characterization of a Janus artificial microswimmer
Figure 2: Individual Janus nanotree migration under ultraviolet illumination.
Figure 3: Chemically treated Janus nanotree migration.
Figure 4: The Janus nanotree self-aligns with the illumination direction and nanotree navigation.
Figure 5: Programmable phototaxis of an individual Janus nanotree by chemical treatment.
Figure 6: Schooling of artificial microswimmers, compared with natural green algae.

References

  1. 1

    Nultsch, W. in Primitive Sensory and Communication Systems. The Taxis and Tropism of Microorganisms and Cells (ed. Carlile, M. J.) 29–90 (Academic Press, 1975).

    Google Scholar 

  2. 2

    Jékely, G. Evolution of phototaxis. Phil. Trans. R Soc. B 364, 2795–2808 (2009).

    Article  Google Scholar 

  3. 3

    Jekely, G. et al. Mechanism of phototaxis in marine zooplankton. Nature 456, 395–399 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Weibel, D. B. et al. Microoxen: microorganisms to move microscale loads. Proc. Natl Acad. Sci. USA 102, 11963–11967 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Paxton, W. F. et al. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128, 14881–14888 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Guix, M., Mayorga-Martinez, C. C. & Merkoci, A. Nano/micromotors in (bio)chemical science applications. Chem. Rev. 114, 6285–6322 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Wang, W., Duan, W. T., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–554 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Ma, X., Hahn, K. & Sanchez, S. Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137, 4976–4979 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Magdanz, V., Stoychev, G., Ionov, L., Sanchez, S. & Schmidt, O. G. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem. Int. Ed. 53, 2673–2677 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Wilson, D. A., Nolte, R. J. & van Hest, J. C. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Hong, Y. Y., Diaz, M., Cordova-Figueroa, U. M. & Sen, A. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 20, 1568–1576 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Giudicatti, S. et al. Photoactive rolled-up TiO2 microtubes: fabrication, characterization and applications. J. Mater. Chem. C 2, 5892–5901 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Wang, W. et al. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53, 3201–3204 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Walker, D., Kasdorf, B. T., Jeong, H. H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).

    Article  Google Scholar 

  17. 17

    Loget, G. & Kuhn, A. Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 535 (2011).

    Article  Google Scholar 

  18. 18

    Gao, W. & Wang, J. Synthetic micro/nanomotors in drug delivery. Nanoscale 6, 10486–10494 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Kagan, D. et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51, 7519–7522 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Mino, G. et al. Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106, 048102 (2011).

    Article  Google Scholar 

  21. 21

    Hong, Y., Blackman, N. M., Kopp, N. D., Sen, A. & Velegol, D. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99, 178103 (2007).

    Article  Google Scholar 

  22. 22

    Baraban, L., Harazim, S. M., Sanchez, S. & Schmidt, O. G. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 52, 5552–5556 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Saha, S., Golestanian, R. & Ramaswamy, S. Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E 89, 062316 (2014).

    Article  Google Scholar 

  24. 24

    Dey, K. K. et al. Micromotors powered by enzyme catalysis. Nano Lett. 15, 8311–8315 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Peng, F., Tu, Y., van Hest, J. C. & Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 54, 11662–11665 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Dey, K. K., Bhandari, S., Bandyopadhyay, D., Basu, S. & Chattopadhyay, A. The pH taxis of an intelligent catalytic microbot. Small 9, 1916–1920 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Solovev, A. A., Sanchez, S., Pumera, M., Mei, Y. F. & Schmidt, O. G. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv. Funct. Mater. 20, 2430–2435 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Baraban, L. et al. Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6, 3383–3389 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Chaturvedi, N., Hong, Y., Sen, A. & Velegol, D. Magnetic enhancement of phototaxing catalytic motors. Langmuir 26, 6308–6313 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Solovev, A. A., Smith, E. J., Bof’ Bufon, C. C., Sanchez, S. & Schmidt, O. G. Light-controlled propulsion of catalytic microengines. Angew. Chem. Int. Ed. 50, 10875–10878 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Liu, C., Tang, J., Chen, H. M., Liu, B. & Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Liu, C., Hwang, Y. J., Jeong, H. E. & Yang, P. Light-induced charge transport within a single asymmetric nanowire. Nano Lett. 11, 3755–3758 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Li, J. et al. Nanomotor lithography. Nat. Commun. 5, 5026 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Cheng, M., Yang, X., Zhang, F., Zhao, J. & Sun, L. Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone as a bioinspired redox couple. Angew. Chem. Int. Ed. 51, 9896–9899 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Liu, R. & Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133, 20064–20067 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Harris, L. B. Simplified calculation of electrophoretic mobility of non-spherical particles when the electrical double layer is very extended. J. Colloid Interface Sci. 34, 322–325 (1970).

    Article  Google Scholar 

  38. 38

    Shyue, J. J. et al. Acid–base properties and zeta potentials of self-assembled monolayers obtained via in situ transformations. Langmuir 20, 8693–8698 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Hwang, Y. J., Hahn, C., Liu, B. & Yang, P. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6, 5060–5069 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Triplett, M. et al. Long minority carrier diffusion lengths in bridged silicon nanowires. Nano Lett. 15, 523–529 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Wakabayashi, K., Misawa, Y., Mochiji, S. & Kamiya, R. Reduction–oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 108, 11280–11284 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Nultsch, W., Schuchart, H. & Hohl, M. Investigations on the phototactic orientation of Anabaena variabilis. Arch. Microbiol. 122, 85–91 (1979).

    CAS  Article  Google Scholar 

  43. 43

    Diehn, B. Phototaxis and sensory transduction in Euglena. Science 181, 1009–1015 (1973).

    CAS  Article  Google Scholar 

  44. 44

    Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Brittman from AMOLF and C. Liu from Harvard University for discussions. This work was supported in part by the Hong Kong Research Grants Council (RGC) General Research Fund (GRF17303015, ECS27300814), the University Grant Council (contract no. AoE/P-04/08), the URC Strategic Research Theme on New Materials and the URC Strategic Research Theme on Clean Energy (University of Hong Kong).

Author information

Affiliations

Authors

Contributions

B.D. and J.T. conceived and designed the experiments. B.D., J.W., Z.X., X.Z. and W.D. fabricated the devices and performed the measurements. C.-C.L. and S.-P.F. helped with zeta potential measurements. B.D. and J.T. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jinyao Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1362 kb)

Supplementary information

Supplementary Movie 1 (MOV 379 kb)

Supplementary information

Supplementary Movie 2 (MOV 12295 kb)

Supplementary information

Supplementary Movie 3 (MOV 2051 kb)

Supplementary information

Supplementary Movie 4 (MOV 1212 kb)

Supplementary information

Supplementary Movie 5 (MOV 3869 kb)

Supplementary information

Supplementary Movie 6 (MOV 9321 kb)

Supplementary information

Supplementary Movie 7 (MOV 20543 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, B., Wang, J., Xiong, Z. et al. Programmable artificial phototactic microswimmer. Nature Nanotech 11, 1087–1092 (2016). https://doi.org/10.1038/nnano.2016.187

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research