Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles


The development of antidrug antibodies (ADAs) is a common cause for the failure of biotherapeutic treatments and adverse hypersensitivity reactions. Here we demonstrate that poly(lactic-co-glycolic acid) (PLGA) nanoparticles carrying rapamycin, but not free rapamycin, are capable of inducing durable immunological tolerance to co-administered proteins that is characterized by the induction of tolerogenic dendritic cells, an increase in regulatory T cells, a reduction in B cell activation and germinal centre formation, and the inhibition of antigen-specific hypersensitivity reactions. Intravenous co-administration of tolerogenic nanoparticles with pegylated uricase inhibited the formation of ADAs in mice and non-human primates and normalized serum uric acid levels in uricase-deficient mice. Similarly, the subcutaneous co-administration of nanoparticles with adalimumab resulted in the durable inhibition of ADAs, leading to normalized pharmacokinetics of the anti-TNFα antibody and protection against arthritis in TNFα transgenic mice. Adjunct therapy with tolerogenic nanoparticles represents a novel and broadly applicable approach to prevent the formation of ADAs against biologic therapies.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Inhibition of antibody responses in rodents and cynomolgus monkeys.
Figure 2: Specificity of tolerance induced by SVP-Rapamycin in combination with a free antigen.
Figure 3: Cellular response to SVP-Rapamycin and the antigen.
Figure 4: Prevention of adverse reactions to antigen exposure.
Figure 5: Prevention of anti-pegsiticase responses in mice and monkeys.
Figure 6: Prevention of adalimumab ADAs and protection from arthritis in HuTNFα transgenic mice.


  1. 1

    Goodman, M. Market watch: sales of biologics to show robust growth through to 2013. Nat. Rev. Drug Discov. 8, 837 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Sathish, J. G. et al. Challenges and approaches for the development of safer immunomodulatory biologics. Nat. Rev. Drug Discov. 12, 306–324 (2013).

    CAS  Article  Google Scholar 

  3. 3

    van Schouwenburg, P. A., Rispens, T. & Wolbink, G. J. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 164–172 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Rosenberg, A. S. Immunogenicity of biological therapeutics: a hierarchy of concerns. Dev. Biol. 112, 15–21 (2003).

    CAS  Google Scholar 

  5. 5

    Schellekens, H. The immunogenicity of therapeutic proteins. Discov. Med. 9, 560–564 (2010).

    Google Scholar 

  6. 6

    Chirmule, N., Jawa, V. & Meibohm, B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 14, 296–302 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Casadevall, N. et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Berrier, K. L. et al. CRIM-negative infantile Pompe disease: characterization of immune responses in patients treated with ERT monotherapy. Genet. Med. 17, 912–918 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Bartelds, G. M. et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305, 1460–1468 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Schellekens, H., Hennink, W. E. & Brinks, V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm. Res. 30, 1729–1734 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Sundy, J. S. et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA 306, 711–720 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Lipsky, P. E. et al. Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res. Ther. 16, R60 (2014).

    Article  Google Scholar 

  13. 13

    Parenky, A. et al. New FDA draft guidance on immunogenicity. AAPS J. 16, 499–503 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Krieckaert, C. L., Bartelds, G. M. & Wolbink, G. J. Therapy: Immunogenicity of biologic therapies-we need tolerance. Nat. Rev. Rheumatol. 6, 558–559 (2010).

    Article  Google Scholar 

  15. 15

    Maldonado, R. A. & von Andrian, U. H. How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol. 108, 111–165 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Naranjo-Gomez, M. et al. Comparative study of clinical grade human tolerogenic dendritic cells. J. Transl. Med. 9, 89 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Fischer, R., Turnquist, H. R., Taner, T. & Thomson, A. W. Use of rapamycin in the induction of tolerogenic dendritic cells. Handb Exp Pharmacol, 215–232 (2009).

  18. 18

    Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Wu, X. et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc. Natl Acad. Sci. USA 91, 742–746 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Haile, L. A., Puig, M., Kelley-Baker, L. & Verthelyi, D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS ONE 10, e0125078 (2015).

    Article  Google Scholar 

  21. 21

    Joseph, A., Munroe, K., Housman, M., Garman, R. & Richards, S. Immune tolerance induction to enzyme-replacement therapy by co-administration of short-term, low-dose methotrexate in a murine Pompe disease model. Clin. Exp. Immunol. 152, 138–146 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Barnden, M. J., Allison, J., Heath, W. R. & Carbone, F. R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 76, 34–40 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Merrell, K. T. et al. Identification of anergic B cells within a wild-type repertoire. Immunity 25, 953–962 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Matsumoto, M. et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 41, 1040–1051 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Bomalaski, J. S., Holtsberg, F. W., Ensor, C. M. & Clark, M. A. Uricase formulated with polyethylene glycol (uricase-PEG 20): biochemical rationale and preclinical studies. J. Rheumatol. 29, 1942–1949 (2002).

    CAS  Google Scholar 

  26. 26

    Hayward, M. D. et al. An extensive phenotypic characterization of the hTNFalpha transgenic mice. BMC Physiol. 7, 13 (2007).

    Article  Google Scholar 

  27. 27

    Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nature Mater. 12, 978–990 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Metcalfe, S. M. & Fahmy, T. M. Targeted nanotherapy for induction of therapeutic immune responses. Trends Mol. Med. 18, 72–80 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Donahue, A. C. & Fruman, D. A. Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur. J. Immunol. 37, 2923–2936 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Limon, J. J. & Fruman, D. A. Akt and mTOR in B cell activation and differentiation. Front. Immunol. 3, 228 (2012).

    Article  Google Scholar 

  33. 33

    Keating, R. et al. The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nature Immunol. 14, 1266–1276 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Zhao, Y. et al. Rapamycin prevents bronchiolitis obliterans through increasing infiltration of regulatory B cells in a murine tracheal transplantation model. J. Thorac. Cardiovasc. Surg. 151, 487–496 (2016).

    CAS  Article  Google Scholar 

  35. 35

    Pasut, G. & Veronese, F. M. State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control. Release 161, 461–472 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Armstrong, J. K. et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110, 103–111 (2007).

    Article  Google Scholar 

  37. 37

    De Groot, A. S., Knopp, P. M. & Martin, W. De-immunization of therapeutic proteins by T-cell epitope modification. Dev. Biol. 122, 171–194 (2005).

    CAS  Google Scholar 

  38. 38

    Bryson, C. J., Jones, T. D. & Baker, M. P. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs 24, 1–8 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Onda, M. Reducing the immunogenicity of protein therapeutics. Curr. Drug Targets 10, 131–139 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Mazor, R., Tai, C. H., Lee, B. & Pastan, I. Poor correlation between T-cell activation assays and HLA-DR binding prediction algorithms in an immunogenic fragment of Pseudomonas exotoxin A. J. Immunol. Methods 425, 10–20 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Mazor, R. et al. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes. Proc. Natl Acad. Sci. USA 111, 8571–8576 (2014).

    CAS  Article  Google Scholar 

  42. 42

    Macauley, M. S. & Paulson, J. C. Siglecs induce tolerance to cell surface antigens by BIM-dependent deletion of the antigen-reactive B cells. J. Immunol. 193, 4312–4321 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Scott, D. W. Inhibitors – cellular aspects and novel approaches for tolerance. Haemophilia 20(Suppl 4), 80–86 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Lorentz, K. M., Kontos, S., Diaceri, G., Henry, H. & Hubbell, J. A. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci. Adv. 1, e1500112 (2015).

    Article  Google Scholar 

  45. 45

    Gilliland, L. K. et al. Elimination of the immunogenicity of therapeutic antibodies. J. Immunol. 162, 3663–3671 (1999).

    CAS  Google Scholar 

  46. 46

    Colowick, A. B., Bohn, R. L., Avorn, J. & Ewenstein, B. M. Immune tolerance induction in hemophilia patients with inhibitors: costly can be cheaper. Blood 96, 1698–1702 (2000).

    CAS  Google Scholar 

  47. 47

    Mendelsohn, N. J., Messinger, Y. H., Rosenberg, A. S. & Kishnani, P. S. Elimination of antibodies to recombinant enzyme in Pompe's disease. N. Engl. J. Med. 360, 194–195 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Safety and Pharmacodynamics of SEL-212 (Pegsiticase+SEL-110) in Subjects With Elevated Blood Uric Acid Levels.

  49. 49

    Astete, C. E. & Sabliov, C. M. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17, 247–289 (2006).

    CAS  Article  Google Scholar 

  50. 50

    Liu, E. et al. Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B:9-23 and B:13-23. J. Clin. Invest. 110, 1021–1027 (2002).

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the excellent support of M. Allen, M. Mwanza and B. Woldemeskel for ELISA analyses, R. Damien for the analytical characterization of nanoparticles and Y. Gao for the preparation of the KLH-PEG. We also thank M. Schwartzschild for providing the uricase-deficient mice.

Author information




T.K.K., J.D.F., R.A.L., P.N.K and R.A.M. designed the in vivo and ex vivo studies and analysed data, A.P.G., C.O'N., D.H.A., and L.J. designed and developed the nanoparticles, E.B. and A.C. developed the ELISA methods and analysed data, V.C. developed the method for analysis of uric acid, V.C., W.K., F.F., and N.V. developed the analytical methods to characterize the nanoparticles and analysed data, and T.K.K. and R.A.M. wrote the manuscript.

Corresponding author

Correspondence to Takashi K. Kishimoto.

Ethics declarations

Competing interests

All authors are employees and shareholders of Selecta Biosciences.

Supplementary information

Supplementary information

Supplementary information (PDF 583 kb)

Supplementary information

Supplementary information (PPTX 11461 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, T., Ferrari, J., LaMothe, R. et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nature Nanotech 11, 890–899 (2016).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research