Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature

Subjects

Abstract

Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science such as biology, chemistry, neuroscience and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made sufficiently small. Here, we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen–vacancy magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques that are already experimentally available, our proposed set-up is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micrometre. This scheme further benefits when used for nitrogen–vacancy ensemble measurements, enhancing sensitivity by an additional three orders of magnitude.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Set-up.
Figure 2: The pulse sequence applied to the qubit (black) and to the NV-centre spin (red).
Figure 3: Contour plot of the quantity |B+ · ns|/|B+| in the x–y plane 2 nm above the upper face of the cube.
Figure 4: The FM energy when an external field b/ba = 0.2 is applied.

References

  1. Ramsden, E. Hall-Effect Sensors 2nd edn (Newnes, 2006).

    Google Scholar 

  2. Huber, M. E. et al. Gradiometric micro-squid susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79 ( 2008).

    Article  Google Scholar 

  3. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    CAS  Article  Google Scholar 

  4. Poggio, M. & Degen, C. L. Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21, 342001 (2010).

    CAS  Article  Google Scholar 

  5. Peddibhotla, P. et al. Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire. Nature Phys. 9, 631–635 (2013).

    CAS  Article  Google Scholar 

  6. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    CAS  Article  Google Scholar 

  7. Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech. 9, 279–284 (2014).

    CAS  Article  Google Scholar 

  8. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    CAS  Article  Google Scholar 

  9. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    CAS  Article  Google Scholar 

  10. Waldherr, G. et al. High-dynamic-range magnetometry with a single nuclear spin in diamond. Nature Nanotech. 7, 105–108 (2012).

    CAS  Article  Google Scholar 

  11. Bassett, L. C. et al. Ultrafast optical control of orbital and spin dynamics in a solid-state defect. Science 345, 1333–1337 (2014).

    CAS  Article  Google Scholar 

  12. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    CAS  Article  Google Scholar 

  13. Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

    CAS  Article  Google Scholar 

  14. Loretz, M., Pezzagna, S., Meijer, J. & Degen, C. L. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Appl. Phys. Lett. 104 ( 2014).

  15. Schaffry, M., Gauger, E. M., Morton, J. J. L. & Benjamin, S. C. Proposed spin amplification for magnetic sensors employing crystal defects. Phys. Rev. Lett. 107, 207210 (2011).

    Article  Google Scholar 

  16. van der Sar, T ., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin waves using single electron spins. Preprint at http://arXiv.org/abs/1410.6423 (2014).

  17. Wolfe, C. S. et al. Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014).

    Article  Google Scholar 

  18. Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nature Phys. 7, 789–793 (2011).

    Article  Google Scholar 

  19. Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A 240, 599–642 (1948).

    Article  Google Scholar 

  20. Trifunovic, L., Pedrocchi, F. L. & Loss, D. Long-distance entanglement of spin qubits via ferromagnet. Phys. Rev. X 3, 041023 (2013).

    Google Scholar 

  21. Cywiáski, Å., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  22. De Lange, G., Wang, Z. H., Rista, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    CAS  Article  Google Scholar 

  23. Acosta, V. M. et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 80, 115202 (2009).

    Article  Google Scholar 

  24. Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article  Google Scholar 

  25. Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    CAS  Article  Google Scholar 

  26. Puentes, G., Waldherr, G., Neumann, P., Balasubramanian, G. & Wrachtrup, J. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond. Sci. Rep. 4, 4677 (2014).

  27. London, P., Balasubramanian, P., Naydenov, B., McGuinness, L. P. & Jelezko, F. Strong driving of a single spin using arbitrarily polarized fields. Phys. Rev. A 90, 012302 (2014).

    Article  Google Scholar 

  28. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    CAS  Article  Google Scholar 

  29. Yoneda, J. et al. Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014).

    CAS  Article  Google Scholar 

  30. Schryer, N. L. & Walker, L. R. The motion of 180 domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406 (1974).

    CAS  Article  Google Scholar 

  31. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    CAS  Article  Google Scholar 

  32. Tetienne, J-P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Article  Google Scholar 

  33. Schäfer-Nolte, E. et al. Tracking temperature dependent relaxation times of individual ferritin nanomagnets with a wide-band quantum spectrometer. Preprint at http://arXiv.org/abs/1406.0362 (2014).

  34. Schäfer-Nolte, E. et al. Tracking temperature-dependent relaxation times of ferritin nanomagnets with a wideband quantum spectrometer. Phys. Rev. Lett. 113, 217204 (2014).

    Article  Google Scholar 

  35. Smith, D. O. Static and dynamic behavior of thin permalloy films. J. Appl. Phys. 29, 264–273 (1958).

    Article  Google Scholar 

  36. Lotze, J., Huebl, H., Gross, R. & Goennenwein, S. T. B. Spin Hall magnetoimpedance. Phys. Rev. B 90, 174419 (2014).

    Article  Google Scholar 

  37. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  38. Lee, K-J., Deac, A., Redon, O., Nozieres, J-P. & Dieny, B. Excitations of incoherent spin-waves due to spin-transfer torque. Nature Mater. 3, 877–881 (2004).

    CAS  Article  Google Scholar 

  39. Teissier, J., Barfuss, A., Appel, P., Neu, E. & Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014).

    CAS  Article  Google Scholar 

  40. Aharoni, A. Introduction to the Theory of Ferromagnetism 2nd edn (Oxford Univ. Press, 2001).

    Google Scholar 

  41. Samofalov, V. N., Belozorov, D. P. & Ravlik, A. G. Strong stray fields in systems of giant magnetic anisotropy magnets. Physics-Uspekhi 56, 269 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors thank H. Fanghor for sharing his expertise about micromagnetic simulations. This work was supported by the Swiss National Science Foundation, the National Centre of Competence in Research, Quantum Science and Technology, Diamond Devices Enabled Metrology and Sensing, Intelligence Advanced Research Projects Activity, the Defense Advanced Research Projects Agency, Quantum-Assisted Sensing and Readout programmes and the Multidisciplinary University Research Initiative, Qubit Enabled Imaging, Sensing, and Metrology. F.L.P. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.T. and F.P. performed the calculations and numerical simulations. L.T. and D.L. were responsible for the project planning. All the authors contributed to the discussions and writing. D.L. initiated and supervised the work.

Corresponding author

Correspondence to Daniel Loss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trifunovic, L., Pedrocchi, F., Hoffman, S. et al. High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature. Nature Nanotech 10, 541–546 (2015). https://doi.org/10.1038/nnano.2015.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.74

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research