Letter | Published:

Optically active quantum dots in monolayer WSe2

Nature Nanotechnology volume 10, pages 491496 (2015) | Download Citation

Abstract

Semiconductor quantum dots have emerged as promising candidates for the implementation of quantum information processing, because they allow for a quantum interface between stationary spin qubits and propagating single photons1,2,3. In the meantime, transition-metal dichalcogenide monolayers have moved to the forefront of solid-state research due to their unique band structure featuring a large bandgap with degenerate valleys and non-zero Berry curvature4. Here, we report the observation of zero-dimensional anharmonic quantum emitters, which we refer to as quantum dots, in monolayer tungsten diselenide, with an energy that is 20–100 meV lower than that of two-dimensional excitons. Photon antibunching in second-order photon correlations unequivocally demonstrates the zero-dimensional anharmonic nature of these quantum emitters. The strong anisotropic magnetic response of the spatially localized emission peaks strongly indicates that radiative recombination stems from localized excitons that inherit their electronic properties from the host transition-metal dichalcogenide. The large 1 meV zero-field splitting shows that the quantum dots have singlet ground states and an anisotropic confinement that is most probably induced by impurities or defects. The possibility of achieving electrical control in van der Waals heterostructures5 and to exploit the spin–valley degree of freedom6 renders transition-metal-dichalcogenide quantum dots interesting for quantum information processing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

  2. 2.

    et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

  3. 3.

    , , , & Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

  4. 4.

    , , & Spins and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

  5. 5.

    et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

  6. 6.

    , , , & Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  7. 7.

    et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

  8. 8.

    , , , & Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

  9. 9.

    , , & Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

  10. 10.

    et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

  11. 11.

    et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

  12. 12.

    et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

  13. 13.

    , , & Exciton-assisted optomechanics with suspended carbon nanotubes. New J. Phys. 14, 115003 (2012).

  14. 14.

    et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotech. 8, 896–869 (2013).

  15. 15.

    et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

  16. 16.

    et al. Valley Zeeman effect in elementary optical excitations of a monolayer WSe2. Nature Phys. 11, 141–147 (2015).

  17. 17.

    et al. Carrier and polarization dynamics in monolayer MoS2. Phys. Rev. Lett. 112, 047401 (2014).

  18. 18.

    La fluorescence de résonance: Étude par la méthode de l'atome habillé. Ann. Phys. (Paris) 8, 315 (1983).

  19. 19.

    , , , & Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett. 329, 399–404 (2000).

  20. 20.

    , , , & Observation of quantum jumps of a single quantum dot spin using submicrosecond single-shot optical readout. Phys. Rev. Lett. 112, 116802 (2014).

  21. 21.

    , , & Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys. 4, 519–522 (2008).

  22. 22.

    et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).

  23. 23.

    et al. Magnetic control of valley pseudospin in monolayer WSe2. Nature Phys. 11, 148–152 (2015).

  24. 24.

    et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 113, 266804 (2014).

  25. 25.

    , , & Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides. New J. Phys. 16, 105011 (2014).

  26. 26.

    , , , & Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).

  27. 27.

    , , & Line defects in molybdenum disulfide layers. J. Phys. Chem. C 117, 10842 (2013).

  28. 28.

    & Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 88, 075404 (2013).

  29. 29.

    , , & Spin–orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014).

  30. 30.

    et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech. (2015).

  31. 31.

    et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. (2015).

  32. 32.

    et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotech. (2015).

  33. 33.

    et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  34. 34.

    , , , & Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

Download references

Acknowledgements

This work is supported by NCCR Quantum Science and Technology (NCCR QSIT), a research instrument of the Swiss National Science Foundation (SNSF).

Author information

Author notes

    • Ajit Srivastava
    •  & Meinrad Sidler

    These authors contributed equally to this work

Affiliations

  1. Institute of Quantum Electronics, ETH Zurich, Zurich CH-8093, Switzerland

    • Ajit Srivastava
    • , Meinrad Sidler
    •  & A. Imamoğlu
  2. Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Switzerland

    • Adrien V. Allain
    • , Dominik S. Lembke
    •  & Andras Kis

Authors

  1. Search for Ajit Srivastava in:

  2. Search for Meinrad Sidler in:

  3. Search for Adrien V. Allain in:

  4. Search for Dominik S. Lembke in:

  5. Search for Andras Kis in:

  6. Search for A. Imamoğlu in:

Contributions

A.S. and M.S. carried out the optical measurements. A.V.A., D.S.L. and A.K. prepared the samples. A.S. and A.I. supervised the project and analysed the experimental data. All authors contributed extensively to this work.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Ajit Srivastava or A. Imamoğlu.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2015.60

Further reading