Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging

Abstract

Femtosecond nonlinear optical imaging with nanoscale spatial resolution would provide access to coupled degrees of freedom and ultrafast response functions on the characteristic length scales of electronic and vibrational excitations. Although near-field microscopy provides the desired spatial resolution, the design of a broadband high-contrast nanoprobe for ultrafast temporal resolution is challenging due to the inherently weak nonlinear optical signals generated in subwavelength volumes. Here, we demonstrate broadband four-wave mixing with enhanced nonlinear frequency conversion efficiency at the apex of a nanometre conical tip. Far-field light is coupled through a grating at the shaft of the tip, generating plasmons that propagate to the apex while undergoing asymptotic compression and amplification, resulting in a nonlinear conversion efficiency of up to 1 × 10–5. We apply this nonlinear nanoprobe to image the few-femtosecond coherent dynamics of plasmonic hotspots on a nanostructured gold surface with spatial resolution of a few tens of nanometres. The approach can be generalized towards spatiotemporal imaging and control of coherent dynamics on the nanoscale, including the extension to multidimensional spectroscopy and imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: FWM of nanofocused surface plasmon polaritons.
Figure 2: FWM dependence on spectral phase of the excitation pulse.
Figure 3: Dynamics of tip-generated FWM.
Figure 4: Femtosecond FWM nanoimaging of coherent plasmon dynamics in gold.
Figure 5: Localization of FWM response in adiabatic nanofocusing.

References

  1. 1

    Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Berweger, S., Atkin, J. M., Olmon, R. L. & Raschke, M. B. Adiabatic tip–plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1, 3427–3432 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Sadiq, D. et al. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett. 11, 1609–1613 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Babadjanyan, A. J., Margaryan, N. L. & Nerkararyan, K. V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3788 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  Google Scholar 

  6. 6

    De Angelis, F. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotech. 5, 67–72 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Schmidt, S. et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6, 6040–6048 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Choo, H. et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photon. 6, 837–843 (2012).

    Article  Google Scholar 

  9. 9

    Gramotnev, D. K. & Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nature Photon. 8, 14–23 (2014).

    Article  Google Scholar 

  10. 10

    Verhagen, E., Kuipers, L. & Polman, A. Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett. 7, 334–337 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Park, I. Y. et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photon. 5, 678–682 (2011).

    Article  Google Scholar 

  12. 12

    Sivis, M., Duwe, M., Abel, B. & Ropers, C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nature Phys. 9, 304–309 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Kravtsov, V., Atkin, J. M. & Raschke, M. B. Group delay and dispersion in adiabatic plasmonic nanofocusing. Opt. Lett. 38, 1322–1324 (2013).

    Article  Google Scholar 

  14. 14

    Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008).

    Google Scholar 

  15. 15

    MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nature Photon. 8, 650–656 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Lippitz, M., van Dijk, M. A. & Orrit, M. Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).

    Article  Google Scholar 

  19. 19

    Kim, H., Taggart, D. K., Xiang, C., Penner, R. M. & Potma, E. O. Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires. Nano Lett. 8, 2373–2377 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Palomba, S. & Novotny, L. Near-field imaging with a localized nonlinear light source. Nano Lett. 9, 3801–3804 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Jung, Y., Chen, H., Tong, L. & Cheng, J.-X. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing. J. Phys. Chem. C 113, 2657–2663 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Genevet, P. et al. Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett. 10, 4880–4883 (2010).

    CAS  Article  Google Scholar 

  23. 23

    De Leon, I., Sipe, J. E. & Boyd, R. W. Self-phase-modulation of surface plasmon polaritons. Phys. Rev. A 89, 013855 (2014).

    Article  Google Scholar 

  24. 24

    Davoyan, A. R., Shadrivov, I. V., Zharov, A. A., Gramotnev, D. K. & Kivshar, Y. S. Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett. 105, 116804 (2010).

    Article  Google Scholar 

  25. 25

    Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

    Article  Google Scholar 

  26. 26

    Renger, J., Quidant, R., van Hulst, N., Palomba, S. & Novotny, L. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett. 103, 266802 (2009).

    Article  Google Scholar 

  27. 27

    Min, W., Lu, S., Rueckel, M., Holtom, G. R. & Xie, X. S. Near-degenerate four-wave-mixing microscopy. Nano Lett. 9, 2423–2426 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Wang, Y., Lin, C.-Y., Nikolaenko, A., Raghunathan, V. & Potma, E. O. Four-wave mixing microscopy of nanostructures. Adv. Opt. Photon. 3, 1–52 (2011).

    Article  Google Scholar 

  30. 30

    Hache, F., Ricard, D., Flytzanis, C. & Kreibig, U. The optical Kerr effect in small metal particles and metal colloids: the case of gold. Appl. Phys. A 47, 347–357 (1988).

    Article  Google Scholar 

  31. 31

    Petek, H., Nagano, H. & Ogawa, S. Hole decoherence of d bands in copper. Phys. Rev. Lett. 83, 1931–1934 (1999).

    Article  Google Scholar 

  32. 32

    Berweger, S., Atkin, J. M., Xu, X. G., Olmon, R. L. & Raschke, M. B. Femtosecond nanofocusing with full optical waveform control. Nano Lett. 11, 4309–4313 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Cui, X. et al. Transient excitons at metal surfaces. Nature Phys. 10, 505–509 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Anderson, A., Deryckx, K. S., Xu, X. J. G., Steinmeyer, G. & Raschke, M. B. Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Lett. 10, 2519–2524 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Sonnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Boyd, R. W., Shi, Z. & De Leon, I. The third-order nonlinear optical susceptibility of gold. Opt. Commun. 326, 74–79 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Kravtsov, V., Berweger, S., Atkin, J. M. & Raschke, M. B. Control of plasmon emission and dynamics at the transition from classical to quantum coupling. Nano Lett. 14, 5270–5275 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Aeschlimann, M. et al. Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Wang, L.-M., Zhang, L., Seideman, T. & Petek, H. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films. Phys. Rev. B 86, 165408 (2012).

    Article  Google Scholar 

  41. 41

    Feldstein, M. J., Vohringer, P., Wang, W. & Scherer, N. F. Femtosecond optical spectroscopy and scanning probe microscopy. J. Phys. Chem. 100, 4739–4748 (1996).

    CAS  Article  Google Scholar 

  42. 42

    Xu, X. G. & Raschke, M. B. Near-field infrared vibrational dynamics and tip-enhanced decoherence. Nano Lett. 13, 1588–1595 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nature Photon. 4, 869–874 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photon. 7, 620–625 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Lee, J., Perdue, S. M., Rodriguez Perez, A. & Apkarian, V. A. Vibronic motion with joint angstrom–femtosecond resolution observed through Fano progressions recorded within one molecule. ACS Nano 8, 54–63 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Neacsu, C. C. et al. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10, 592–596 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Keusters, D., Tan, H.-S. & Warren, W. S. Role of pulse phase and direction in two-dimensional optical spectroscopy. J. Phys. Chem. A 103, 10369–10380 (1999).

    CAS  Article  Google Scholar 

  50. 50

    Bloem, R., Garrett-Roe, S., Strzalka, H., Hamm, P. & Donaldson, P. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments. Opt. Express 18, 27067–27078 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Science Foundation (NSF grant CHE 1306398), AFOSR (grant #FA9550-14-1-0376) and a partner proposal by the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility from the DOE Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE under contract DEAC06-76RL01830. R.U. acknowledges support by a Rubicon Grant of the Netherlands Organization for Scientific Research (NWO). The authors thank H. Petek and S. Cundiff for discussions.

Author information

Affiliations

Authors

Contributions

M.B.R., R.U. and V.K. conceived the experiment. R.U. and J.M.A. contributed to designing the experiment. V.K. performed the measurements and analysed the data. V.K. and M.B.R. wrote the manuscript with contributions from R.U. and J.M.A. All authors discussed the results and commented on the manuscript. M.B.R. supervised the project.

Corresponding author

Correspondence to Markus B. Raschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 657 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kravtsov, V., Ulbricht, R., Atkin, J. et al. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nature Nanotech 11, 459–464 (2016). https://doi.org/10.1038/nnano.2015.336

Download citation

Further reading