A quantum phase switch between a single solid-state spin and a photon


Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin–photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin–photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin–photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device and experimental set-up.
Figure 2: Spin-dependent cavity reflectivity.
Figure 3: Ramsey interferometry measurements.
Figure 4: Time-resolved cavity reflection spectrum.
Figure 5: Photon-induced spin phase switch.


  1. 1

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Cirac, J. I., Ekert, A. K., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Cho, J. & Lee, H. Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95, 160501 (2005).

    Article  Google Scholar 

  4. 4

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Volz, J., Gehr, R., Dubois, G., Estève, J. & Reichel, J. Measurement of the internal state of a single atom without energy exchange. Nature 475, 210–213 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Duan, L. M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  Google Scholar 

  9. 9

    Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear pi phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature Photon. 8, 965–970 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Waks, E. & Vuckovic, J. Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006).

    Article  Google Scholar 

  13. 13

    Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Hu, C. Y., Young, A., O'Brien, J. L., Munro, W. J. & Rarity, J. G. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008).

    Article  Google Scholar 

  15. 15

    Bonato, C. et al. CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010).

    Article  Google Scholar 

  16. 16

    Li, Y., Aolita, L., Chang, D. E. & Kwek, L. C. Robust-fidelity atom-photon entangling gates in the weak-coupling regime. Phys. Rev. Lett. 109, 160504 (2012).

    Article  Google Scholar 

  17. 17

    Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014).

    Google Scholar 

  18. 18

    Sollner, I. et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nature Nanotech. 10, 775–778 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Kim, H., Bose, R., Shen, T. C., Solomon, G. S. & Waks, E. A quantum logic gate between a solid-state quantum bit and a photon. Nature Photon. 7, 373–377 (2013).

    Article  Google Scholar 

  21. 21

    Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    CAS  Article  Google Scholar 

  25. 25

    De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Gao, W., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nature. Commun. 4, 2744 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Rakher, M. T., Stoltz, N. G., Coldren, L. A., Petroff, P. M. & Bouwmeester, D. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Phys. Rev. Lett. 102, 097403 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Pinotsi, D., Sanchez, J. M., Fallahi, P., Badolato, A. & Imamoglu, A. Charge controlled self-assembled quantum dots coupled to photonic crystal nanocavities. Photon. Nanostruct. 10, 256–262 (2012).

    Article  Google Scholar 

  31. 31

    Lagoudakis, K. G. et al. Deterministically charged quantum dots in photonic crystal nanoresonators for efficient spin–photon interfaces. New J. Phys. 15, 113056 (2013).

    Article  Google Scholar 

  32. 32

    Carter, S. G. et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photon. 7, 329–334 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Arnold, C. et al. Macroscopic rotation of photon polarization induced by a single spin. Nature Commun. 6, 6236 (2015).

    Article  Google Scholar 

  34. 34

    Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  Google Scholar 

  35. 35

    Hughes, S. & Kamada, H. Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide. Phys. Rev. B 70, 195313 (2004).

    Article  Google Scholar 

  36. 36

    Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Shen, J.-T. & Fan, S. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009).

    Article  Google Scholar 

  38. 38

    Atature, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  Google Scholar 

  39. 39

    Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  Google Scholar 

  41. 41

    Majumdar, A., Kim, E. D. & Vučković, J. Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity. Phys. Rev. B 84, 195304 (2011).

    Article  Google Scholar 

  42. 42

    Ramsay, A. J. A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots. Semicond. Sci. Technol. 25, 103001 (2010).

    Article  Google Scholar 

  43. 43

    Arakawa, Y., Iwamoto, S., Nomura, M., Tandaechanurat, A. & Ota, Y. Cavity quantum electrodynamics and lasing oscillation in single quantum dot-photonic crystal nanocavity coupled systems. IEEE J. Sel. Top. Quantum Electron. 18, 1818–1829 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Bose, R., Sridharan, D., Solomon, G. & Waks, E. Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide. Opt. Express 19, 5398–5409 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Weidner, E. et al. Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity. Appl. Phys. Lett. 89, 221104 (2006).

    Article  Google Scholar 

  46. 46

    Combrié, S., De Rossi, A., Tran, Q. V. & Benisty, H. GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm. Opt. Lett. 33, 1908–1910 (2008).

    Article  Google Scholar 

  47. 47

    Schneider, C. et al. Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92, 183101 (2008).

    Article  Google Scholar 

  48. 48

    Yakes, M. K. et al. Leveraging crystal anisotropy for deterministic growth of InAs quantum dots with narrow optical linewidths. Nano Lett. 13, 4870–4875 (2013).

    CAS  Article  Google Scholar 

  49. 49

    Bose, R., Sridharan, D., Solomon, G. S. & Waks, E. Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities. Appl. Phys. Lett. 98, 121109 (2011).

    Article  Google Scholar 

  50. 50

    Akahane, Y., Asano, T., Song, B. S. & Noda, S. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express 13, 1202–1214 (2005).

    Article  Google Scholar 

Download references


The authors would like to acknowledge support from the DARPA QUINESS program (grant number W31P4Q1410003), the Physics Frontier Centre at the Joint Quantum Institute, and the National Science Foundation (grant number PHYS.1415458).

Author information




S.S., H.K. and E.W. conceived and designed the experiments. S.S. performed the experiments and analysed the data. H.K. contributed to sample design and fabrication. S.S. and E.W. performed the theoretical analysis and co-wrote the manuscript. G.S.S. provided samples grown by molecular beam epitaxy.

Corresponding author

Correspondence to Edo Waks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1092 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Kim, H., Solomon, G. et al. A quantum phase switch between a single solid-state spin and a photon. Nature Nanotech 11, 539–544 (2016). https://doi.org/10.1038/nnano.2015.334

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research