Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Femtosecond control of electric currents in metallic ferromagnetic heterostructures

Abstract

The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012 Hz) emission spectroscopy and exploiting the spin–orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental schematics and symmetry of the emitted terahertz radiation.
Figure 2: Role of symmetry breaking directionality for terahertz emission in Co (10 nm)/Pt (2 nm).
Figure 3: Amplitude of terahertz emission as a function of thickness of the Pt capping layer and fluence.

References

  1. 1

    Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Bychkov, Y. A. & Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    Google Scholar 

  3. 3

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Freimuth, F., Blügel, S. & Mokrousov, Y. Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B 90, 174423 (2014).

    Article  Google Scholar 

  6. 6

    Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nature Nanotech. 9, 211–217 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Ciccarelli, C. et al. Magnonic charge pumping via spin–orbit coupling. Nature Nanotech. 10, 50–54 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

    Article  Google Scholar 

  9. 9

    Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  10. 10

    Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).

    CAS  Article  Google Scholar 

  13. 13

    Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Němec, P. et al. Experimental observation of the optical spin transfer torque. Nature Phys. 8, 411–415 (2012).

    Article  Google Scholar 

  15. 15

    Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Lambert, C. H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nature Mater. 13, 286–292 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Koopmans, B., Groot Koerkamp, M., Rasing, Th. & Van den Berg, H. Observation of large Kerr angles in the nonlinear optical response from magnetic multilayers. Phys. Rev. Lett. 74, 3692–3695 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Wierenga, H. A. et al. Interface magnetism and possible quantum well oscillations in ultrathin Co/Cu films observed by magnetization induced second harmonic generation. Phys. Rev. Lett. 74, 1462–1465 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nature Commun. 5, 4030 (2014).

    Article  Google Scholar 

  22. 22

    Pyatakov, A. P. & Zvezdin, A. K. Dzyaloshinskii–Moriya-type interaction and Lifshitz invariant in Rashba 2D electron gas systems. EPL 107, 67002 (2014).

    Article  Google Scholar 

  23. 23

    Weber, W. et al. Magneto-gyrotropic photogalvanic effects in GaN/AlGaN two-dimensional systems. Solid State Commun. 145, 56–60 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Malinowski, G. et al. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nature Phys. 4, 855–858 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Melnikov, A. et al. Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO(001). Phys. Rev. Lett. 107, 076601 (2011).

    Article  Google Scholar 

  26. 26

    Rudolf, D. et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nature Commun. 3, 1037 (2012).

    Article  Google Scholar 

  27. 27

    Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotech. 8, 256–260 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Choi, G.-M., Min, B.-C., Lee, K.-J. & Cahill, D. G. Spin current generated by thermally driven ultrafast demagnetization. Nature Commun. 5, 4334 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Rojas-Sánchez, J.-C. et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 112, 106602 (2014).

    Article  Google Scholar 

  33. 33

    Schleicher, J. M., Harrel, S. M. & Schmuttenmaer, C. A. Effect of spin-polarized electrons on terahertz emission from photoexcited GaAs. J. Appl. Phys. 105, 113116 (2009).

    Article  Google Scholar 

  34. 34

    Choi, G.-M. Ultrafast Laser Driven Spin Generation in Metallic Ferromagnets PhD thesis, Univ. Illinois (2015).

  35. 35

    Drezet, A., Genet, C. & Ebbesen, T. W. Miniature plasmonic wave plates. Phys. Rev. Lett. 101, 043902 (2008).

    Article  Google Scholar 

  36. 36

    Biagioni, P. et al. Near-field polarization shaping by a near-resonant plasmonic cross antenna. Phys. Rev. B 80, 153409 (2009).

    Article  Google Scholar 

  37. 37

    Mikhaylovskiy, R. V. et al. Ultrafast modification of exchange interactions in iron oxides. Nature Commun. 6, 8190 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Huisman, T. J., Mikhaylovskiy, R. V., Tsukamoto, A., Rasing, Th. & Kimel, A. V. Simultaneous measurements of terahertz emission and magneto-optical Kerr effect for resolving ultrafast laser-induced demagnetization dynamics. Phys. Rev. B 92, 104419 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Toonen, A. van Etteger and S. Semin for technical support and A. Brataas, A. Kirilyuk, A.K. Zvezdin and V.V. Bel'kov for discussions. This work was supported by the Foundation for Fundamental Research on Matter (FOM), the European Union's Seventh Framework Programme (FP7/2007-2013) grants no. 280555 (Go-Fast) and no. 281043 (FemtoSpin), projects no. Norte-070124-FEDER-000070 and no. FEDER-POCTI/0155, European Research Council grants no. 257280 (Femtomagnetism) and no. 339813 (Exchange), and the ‘Leading Scientist’ programme of the Russian Ministry of Education and Science (14.Z50.31.0034). J.D.C. acknowledges FCT grant no. SFRH/BD/7939/2011.

Author information

Affiliations

Authors

Contributions

T.J.H., R.V.M., J.D.C. and A.V.K. conceived the experiments. T.J.H. and R.V.M. designed and built the experimental set-up. T.J.H. performed the measurements and analysed the data with help from R.V.M. and A.V.K. J.D.C. fabricated and characterized the samples with help from E.P., J.V. and P.P.F. The theoretical formalisms were derived by T.J.H., R.V.M. and F.F., with contributions from Y.M., S.B. and A.V.K. T.J.H., R.V.M., F.F. and A.V.K. co-wrote the paper. All authors discussed the results and commented on the manuscript. The project was coordinated by A.V.K.

Corresponding author

Correspondence to T. J. Huisman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 451 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huisman, T., Mikhaylovskiy, R., Costa, J. et al. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nature Nanotech 11, 455–458 (2016). https://doi.org/10.1038/nnano.2015.331

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research