Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures

A Corrigendum to this article was published on 04 August 2017

This article has been updated

Abstract

Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometre size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetization at the nanoscale. Chiral skyrmion structures have so far been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films, and under an external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures at room temperature and zero external magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral Néel internal structure, which we explain as due to the large strength of the Dzyaloshinskii–Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging of the chiral Néel structure of domain walls using XMCD-PEEM magnetic microscopy.
Figure 2
Figure 3: Magnetic skyrmion observed at room temperature and zero external magnetic field.
Figure 4: Micromagnetic simulations.
Figure 5: Effect of an external perpendicular magnetic field.
Figure 6: Forces acting on the the skyrmion and dependence of the skyrmion diameter on a perpendicular magnetic field and the film thickness.

Similar content being viewed by others

Change history

  • 18 July 2017

    In the version of this Article originally published, the Dzyaloshinskii-Moriya interaction parameter, D, should have been multiplied by √3. The vertical scale of Fig. 2 has been updated accordingly as has the following sentence concerning D values: "For 5 monolayers (ML) of Co, equivalent to a total Co thickness of 1 nm, the ab initio calculations predict = 4.0 mJ m-2 whereas a lower value D = 2.6 mJ m-2 is predicted for a Pt/Co/vacuum structure." Additionally the Methods and Supplementary Information have been updated to correct the experimental multilayer composition to: "Ta(3)/Pt(3)/Co(0.5-1)/MgOx/Ta(2) (thickness in nm)".

References

  1. Bogdanov, A. N. & Yablonskii, D. Thermodynamically stable “vortices” in magnetically ordered crystals. the mixed state of magnets. J. Exp. Theor. Phys. 95, 178 (1989).

    Google Scholar 

  2. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  Google Scholar 

  3. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Google Scholar 

  4. Pappas, C. et al. Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102, 197202 (2009).

    Article  CAS  Google Scholar 

  5. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  6. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  7. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  8. Braun, H.-B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).

    Article  CAS  Google Scholar 

  9. Moriya, T. Anisotropic superexchange interaction and weak Ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  10. Dzyaloshinskii, I. E. Sov. Phys. JETP 5, 1259 (1957).

    Google Scholar 

  11. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    CAS  Google Scholar 

  12. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat Phys 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  13. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nature Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  14. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283 (2015).

    Article  CAS  Google Scholar 

  15. Koshibae, W. et al. Memory functions of magnetic skyrmions. Japan. J. Appl. Phys. 54, 053001 (2015).

    Article  CAS  Google Scholar 

  16. Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    Article  CAS  Google Scholar 

  17. Moutafis, C., Komineas, S. & Bland, J. A. C. Dynamics and switching processes for magnetic bubbles in nanoelements. Phys. Rev. B 79, 224429 (2009).

    Article  CAS  Google Scholar 

  18. Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nature Phys. 11, 225–228 (2015).

    Article  CAS  Google Scholar 

  19. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  20. Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

    Article  CAS  Google Scholar 

  21. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nature Nanotech. 8, 742–747 (2013).

    Article  CAS  Google Scholar 

  22. Zhou, Y. & Ezawa, M. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nature Commun. 5, 4652 (2014).

    Article  CAS  Google Scholar 

  23. Zhang, X. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).

    Article  CAS  Google Scholar 

  24. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  25. Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Mater. 10, 106–109 (2011).

    Article  CAS  Google Scholar 

  26. Shibata, K. et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nature Nanotech. 8, 723–728 (2013).

    Article  CAS  Google Scholar 

  27. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  28. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  29. Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  CAS  Google Scholar 

  30. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    Article  CAS  Google Scholar 

  31. Bogdanov, A. & Hubert, A. The stability of vortex-like structures in uniaxial ferromagnets. J. Magn. Magn. Mater. 195, 182–192 (1999).

    Article  CAS  Google Scholar 

  32. Sonntag, A., Hermenau, J., Krause, S. & Wiesendanger, R. Thermal stability of an interface-stabilized skyrmion lattice. Phys. Rev. Lett. 113, 077202 (2014).

    Article  CAS  Google Scholar 

  33. Monso, S. et al. Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: A very accurate control of the oxidation of tunnel barriers. Appl. Phys. Lett. 80, 4157–4159 (2002).

    Article  CAS  Google Scholar 

  34. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article  CAS  Google Scholar 

  35. Freimuth, F., Blügel, S. & Mokrousov, Y. Berry phase theory of Dzyaloshinskii–Moriya interaction and spin–orbit torques. J. Phys. Condens. Matter 26, 104202 (2014).

    Article  CAS  Google Scholar 

  36. Emori, S. et al. Spin hall torque magnetometry of Dzyaloshinskii domain walls. Phys. Rev. B 90, 184427 (2014).

    Article  CAS  Google Scholar 

  37. Pizzini, S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014).

    Article  CAS  Google Scholar 

  38. Di, K. et al. Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett. 106, 052403 (2015).

    Article  CAS  Google Scholar 

  39. Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii-Moriya interaction in metal films. Nature Phys. 11, 825–829 (2015).

    Article  CAS  Google Scholar 

  40. Stashkevich, A. A. et al. Experimental study of spin-wave dispersion in Py/Pt film structures in the presence of an interface Dzyaloshinskii-Moriya interaction. Phys. Rev. B 91, 214409 (2015).

    Article  CAS  Google Scholar 

  41. Belmeguenai, M. et al. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405 (2015).

    Article  CAS  Google Scholar 

  42. Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).

    Article  CAS  Google Scholar 

  43. Chen, G. et al. Novel chiral magnetic domain wall structure in Fe/ Ni/Cu(001) films. Phys. Rev. Lett. 110, 177204 (2013).

    Article  CAS  Google Scholar 

  44. Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nature Commun. 6, 6733 (2015).

    Article  CAS  Google Scholar 

  45. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  46. Garello, K. et al. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  47. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  48. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  CAS  Google Scholar 

  49. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.313 (2016).

  50. Woo, S. et al. Observation of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin Co films. Preprint at http://arxiv.org/abs/1502.07376 (2015).

  51. Slonczewski, J. & Malozemoff, A. P. Magnetic Domain Walls in Bubble Materials (Academic, 1979).

    Google Scholar 

  52. Hehn, M. et al. Nanoscale magnetic domains in mesoscopic magnets. Science 272, 1782–1785 (1996).

    Article  CAS  Google Scholar 

  53. Moutafis, C. et al. Magnetic bubbles in FePt nanodots with perpendicular anisotropy. Phys. Rev. B 76, 104426 (2007).

    Article  CAS  Google Scholar 

  54. Braun, H.-B. Fluctuations and instabilities of ferromagnetic domain-wall pairs in an external magnetic field. Phys. Rev. B 50, 16485–16500 (1994).

    Article  CAS  Google Scholar 

  55. Kubetzka, A., Pietzsch, O., Bode, M. & Wiesendanger, R. Spin-polarized scanning tunneling microscopy study of 360° walls in an external magnetic field. Phys. Rev. B 67, 020401 (2003).

    Article  CAS  Google Scholar 

  56. Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article  CAS  Google Scholar 

  57. Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. D 44, 392001 (2011).

    Article  CAS  Google Scholar 

  58. Braun, H.-B. Nucleation in ferromagnetic nanowires—magnetostatics and topology. J. Appl. Phys. 85, 6172–6174 (1999).

    Article  CAS  Google Scholar 

  59. Guslienko, K. Skyrmion state stability in magnetic nanodots with perpendicular anisotropy. IEEE Magn. Lett. 6, 1–4 (2015).

    Article  Google Scholar 

  60. Chen, G., Mascaraque, A., N'Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).

    Article  CAS  Google Scholar 

  61. Menteş, T. O., Zamborlini, G., Sala, A. & Locatelli, A. Beilstein J. Nanotechnol. 5, 1873886 (2014).

    Article  CAS  Google Scholar 

  62. Aballe, L., Foerster, M., Pellegrin, E., Nicolas, J. & Ferrer, S. The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance. J. Synchrotron Radiat. 22, 745–752 (2015).

    Article  CAS  Google Scholar 

  63. Buda, L. D., Prejbeanu, I. L., Ebels, U. & Ounadjela, K. Micromagnetic simulations of magnetisation in circular cobalt dots. Comput. Mater. Sci. 24, 181 (2002).

    Article  CAS  Google Scholar 

  64. Vansteenkiste, A. & Van de Wiele, B. MuMax: A new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323, 2585–2591 (2011).

    Article  CAS  Google Scholar 

  65. Donahue, M. J. & Porter, D. G. OOMMF User's Guide version 1.0 (National Institute of Standards and Technology, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Thiaville, M. Cubukcu, L. Camosi, M. Caminale and W. Savero-Torres for discussions and their help in experiments. For their contribution to the CIRCE beamline at the Alba synchrotron, we would like to thank C. Escudero, V. Perez-Dieste, E. Pellegrin, J. Nicolas and S. Ferrer. S.P. and J.V. acknowledge the support of the Agence Nationale de la Recherche, project ANR-14-CE26-0012 (ULTRASKY).

Author information

Authors and Affiliations

Authors

Contributions

O.B. conceived and designed the experiments. O.B., J.V., S.P., D.S.C., A.L, T.O.M., A.S., L.A., M.F. participated in the XMCD-PEEM experiments. O.B and J.V. analysed the microscopy data. H.Y. and M.C. carried out the ab initio calculations. O.B., L.B-D. and O.K. carried out the micromagnetic simulations, O.B. carried out the numerical calculations, S.A. deposited the magnetic multilayers, M.B., Y.R., A.S. carried out the BLS experiments. O.B. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Olivier Boulle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulle, O., Vogel, J., Yang, H. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nature Nanotech 11, 449–454 (2016). https://doi.org/10.1038/nnano.2015.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing