Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ultrabright and monochromatic electron point source made of a LaB6 nanowire

Abstract

Electron sources in the form of one-dimensional nanotubes and nanowires are an essential tool for investigations in a variety of fields, such as X-ray computed tomography, flexible displays, chemical sensors and electron optics applications. However, field emission instability and the need to work under high-vacuum or high-temperature conditions have imposed stringent requirements that are currently limiting the range of application of electron sources. Here we report the fabrication of a LaB6 nanowire with only a few La atoms bonded on the tip that emits collimated electrons from a single point with high monochromaticity. The nanostructured tip has a low work function of 2.07 eV (lower than that of Cs) while remaining chemically inert, two properties usually regarded as mutually exclusive. Installed in a scanning electron microscope (SEM) field emission gun, our tip shows a current density gain that is about 1,000 times greater than that achievable with W(310) tips, and no emission decay for tens of hours of operation. Using this new SEM, we acquired very low-noise, high-resolution images together with rapid chemical compositional mapping using a tip operated at room temperature and at 10-times higher residual gas pressure than that required for W tips.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanofabrication of a LaB6 electron point source.
Figure 2: Electron optical characterization of the LaB6 NW field emitter.
Figure 3: Stability of field-induced electron emission.
Figure 4: A field emission SEM with a LaB6 nanowire electron point source.

Similar content being viewed by others

References

  1. Ghosh, P. et al. Transparent and flexible field electron emitters based on the conical nanocarbon structures. J. Am. Chem. Soc. 132, 4034–4035 (2010).

    Article  CAS  Google Scholar 

  2. Choi, W. et al. Fully sealed high brightness carbon nanotube field emission display. Appl. Phys. Lett. 75, 3129–3131 (1999).

    Article  CAS  Google Scholar 

  3. Sugie, H. et al. Carbon nanotubes as electron source in an x-ray tube. Appl. Phys. Lett. 78, 2578–2580 (2001).

    Article  CAS  Google Scholar 

  4. Lee, Y. et al. Carbon nanotube based x-ray sources: applications in pre-clinical and medical imaging. Nucl. Instrum. Meth. A 648, S281–S283 (2011).

    Article  CAS  Google Scholar 

  5. Modi, A., Koratkar, N., Lass, E., Wei, B. & Ajayan, P. Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003).

    Article  CAS  Google Scholar 

  6. Sadeghian, R. & Islam, M. Ultralow voltage field ionization discharge on whiskered silicon nanowires for gas-sensing applications. Nature Mater. 10, 135–140 (2011).

    Article  CAS  Google Scholar 

  7. de Jonge, N., Lamy, Y., Schoots, K. & Oosterkamp, T. High brightness electron beam from a multi-walled carbon nanotube. Nature 420, 393–395 (2002).

    Article  CAS  Google Scholar 

  8. Houdellier, F., Masseboeuf, A., Monthioux, M. & Hytch, M. New carbon cone nanotip for use in a highly coherent cold field emission electron microscope. Carbon 50, 2037–2044 (2012).

    Article  CAS  Google Scholar 

  9. de Jonge, N., Allioux, M., Oostveen, J., Teo, K. & Milne, W. Optical performance of carbon nanotube electron sources. Phys. Rev. Lett. 94, 186807 (2005).

    Article  Google Scholar 

  10. Yeong, K. & Thong, J. Life cycle of a tungsten cold field emitter. J. Appl. Phys. 99, 104903 (2006).

    Article  Google Scholar 

  11. Kasuya, K., Katagiri, S. & Ohshima, T. Stabilization of a tungsten <310> cold field emitter. J. Vac. Sci. Technol. B 28, L55–L60 (2010).

    Article  CAS  Google Scholar 

  12. Schwind, G., Magera, G. & Swanson, L. Comparison of parameters for schottky and cold field emission sources. J. Vac. Sci. Technol. B 24, 2897–2901 (2006).

    Article  CAS  Google Scholar 

  13. Intaraprasonk, V., Xin, H. & Muller, D. Analytic derivation of optimal imaging conditions for incoherent imaging in aberration corrected electron microscopes. Ultramicroscopy 108, 1454–1466 (2008).

    Article  CAS  Google Scholar 

  14. Pennycook, S. & Nellist, P. Scanning Transmission Electron Microscopy (Springer, 2011).

    Book  Google Scholar 

  15. Krivanek, O. et al. Atom by atom structural and chemical analysis by annular dark field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  Google Scholar 

  16. Ahmed, H. & Broers, A. Lanthanum hexaboride electron emitter. J. Appl. Phys. 43, 2185–2192 (1972).

    Article  CAS  Google Scholar 

  17. Uijttewaal, M., Wijs, G. & Groot, R. Ab initio and work function and surface energy anisotropy of LaB6 . J. Phys. Chem. B 110, 18459–18465 (2006).

    Article  CAS  Google Scholar 

  18. Futamoto, M., Hosoki, S., Okano, H. & Kawabe, U. Field emission and field ion microscopy of lanthanum hexaboride. J. Appl. Phys. 48, 3541–3546 (1977).

    Article  CAS  Google Scholar 

  19. Nagata, H., Harada, K. & Shimizu, R. Thermal field emission observation of single crystal LaB6 . J. Appl. Phys. 68, 3614–3618 (1990).

    Article  CAS  Google Scholar 

  20. Zhang, H. et al. Nanostructured LaB6 field emitter with lowest apical work function. Nano Lett. 10, 3539–3544 (2010).

    Article  CAS  Google Scholar 

  21. Zhang, H., Zhang, Q., Tang, J. & Qin, L. Single crystalline LaB6 nanowires. J. Am. Chem. Soc. 127, 2862–2863 (2005).

    Article  CAS  Google Scholar 

  22. Zhang, H. et al. Field emission of electrons from single LaB6 nanowires. Adv. Mater. 18, 87–91 (2006).

    Article  CAS  Google Scholar 

  23. Brewer, J., Deo, N., Wang, Y. & Cheung, C. Lanthanum hexaboride nanoobelisks. Chem. Mater. 19, 6379–6381 (2007).

    Article  CAS  Google Scholar 

  24. Amin, S., Li, S., Roth, J. & Xu, T. Single crystalline alkaline earth metal hexaboride one dimensional (1D) nanostructures: synthesis and characterization. Chem. Mater. 21, 763–770 (2009).

    Article  CAS  Google Scholar 

  25. Fujita, S. Electron gun technologies for high resolution electron microscopes. J. Vac. Soc. Jpn 55, 64–72 (2012).

    Article  CAS  Google Scholar 

  26. Fursey, G. Field Emission In Vacuum Microelectronics (Kluwer Academic, 2005).

    Google Scholar 

  27. Qian, W., Scheinfein, M. & Spence, J. Brightness measurement of nanometer sized field emission electron sources. J. Appl. Phys. 73, 7041–7045 (1993).

    Article  CAS  Google Scholar 

  28. de Jonge, N. et al. Characterization of the field emission properties of individual thin carbon nanotubes. Appl. Phys. Lett. 85, 1607–1609 (2004).

    Article  CAS  Google Scholar 

  29. Nishitani, R. et al. Surface structures and work functions of the LaB6 (100), (110) and (111) clean surfaces. Sur. Sci. 93, 535–549 (1980).

    Article  CAS  Google Scholar 

  30. Bronsgeest, M., Barth, J., Swanson, L. & Kruit, P. Probe current, probe size, and the practical brightness for probe forming systems. J. Vac. Sci. Technol. B 26, 949–955 (2008).

    Article  CAS  Google Scholar 

  31. Swanson, L. & Schwind, G. A review of the cold field electron cathode. Adv. Imag. Elect. Phys. 159, 63–98 (2009).

    Article  CAS  Google Scholar 

  32. Orloff, J. Handbook of charged particle optics (CRC Press, 2009).

    Google Scholar 

  33. Chang, C., Kuo, H., Hwang, I. & Tsong, T. A fully coherent electron beam from a noble metal covered W(111) single atom emitter. Nanotechnology 20, 115401 (2009).

    Article  Google Scholar 

  34. Oshima, C., Rokuta, E., Itagaki, T., Ishikawa, T. & Cho, B. Demountable single atom electron source. e-J. Surf. Sci. Nanotech. 3, 412–416 (2005).

    Article  CAS  Google Scholar 

  35. Swanson, L. & Martin, N. Field electron cathode stability studies: zirconium/tungsten thermal field cathode. J. Appl. Phys. 46, 2029–2050 (1975).

    Article  CAS  Google Scholar 

  36. Toda, Y. et al. Work function of a room temperature stable electride [Ca24Al28O64]4+(e)4 . Adv. Mater. 19, 3564–3569 (2007).

    Article  CAS  Google Scholar 

  37. Zhou, Y. et al. A universal method to produce low work function electrodes for organic electronics. Science 336, 327–332 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Development of System and Technology for Advanced Measurement and Analysis, Japan Science and Technology Corporation (JST) and the Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. The authors also wish to thank Hitachi High-Technologies Corporation for assistance in this project.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., J.T. and L.C.Q. conceived the idea of the study and performed data analysis. H.Z. carried out the main experiments. H.Z., J.T. and L.C.Q. wrote the manuscript. J.T. supervised the project. J.Y. participated in component fabrication. Y.Y. participated in component design and result analysis. T.T.S. participated in the electron energy analyser construction. K.N. carried out electron/ion beam fabrication. N.S. participated in data analysis.

Corresponding authors

Correspondence to Han Zhang or Jie Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Tang, J., Yuan, J. et al. An ultrabright and monochromatic electron point source made of a LaB6 nanowire. Nature Nanotech 11, 273–279 (2016). https://doi.org/10.1038/nnano.2015.276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing