Control of magnetism by electric fields

Abstract

The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electric-field effects in a (Ga,Mn)As channel.
Figure 2: Electric-field-defined ferromagnetic nanodots.
Figure 3: Electric-field effects in ferromagnetic metals.
Figure 4: Using an electric-field pulse to reverse the magnetization and polarization in BiFeO3.
Figure 5: Electric-field control of exchange bias and tunnel magnetoresistance.
Figure 6: Electric-field control of ferromagnetic moment in RFeO3 (R = Dy0.7Gd0.3).
Figure 7: Electrically active magnetic resonance, electromagnon and optical magnetoelectric effect in (Eu,Y)MnO3.

References

  1. 1

    Slonczewski, J. S. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

  2. 2

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

  3. 3

    Ikeda, S. et al. Recent progress of perpendicular anisotropy magnetic tunnel junctions for nonvolatile VLSI. SPIN 2, 1240003 (2012).

  4. 4

    Khvalkovskiy, A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D 46, 074001 (2013).

  5. 5

    Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

  6. 6

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

  7. 7

    Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga, Mn)As. Appl. Phys. Lett. 97, 222501 (2010).

  8. 8

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  9. 9

    Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junctions. Nature Mater. 9, 721–724 (2010).

  10. 10

    Sato, H. et al. Comprehensive study of CoFeB–MgO magnetic tunnel junction characteristics with single- and double-interface scaling down to 1X nm. Tech. Dig. Int. Electron Devices Meeting 60–63 (2013).

  11. 11

    Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000).

  12. 12

    Iwasaki, Y. Stress-driven magnetization reversal in magnetoresistive films with in-plane magnetocystalline anisotropy. J. Magn. Magn. Mater. 240, 395–397 (2002).

  13. 13

    Overby, M., Chernyshov, A., Rokhinson, L. P., Liu, X. & Furdyna, J. K. GaMnAs-based hybrid multiferroic memory devices. Appl. Phys. Lett. 92, 192501 (2008).

  14. 14

    Bihler, C. et al. Ga1–xMnxAs/piezoelectric actuator hybrids: A model for magnetoelastic magnetization manipulation. Phys. Rev. B 78, 045203 (2008).

  15. 15

    Rushforth, A. W. et al. Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures. Phys. Rev. B 78, 085314 (2008).

  16. 16

    Lei, N., Park, S., Lecoeur, P., Ravelosona, D. & Chappert, C. Magnetization reversal assisted by the inverse piezoelectric effect in Co-Fe-B/ferroelectric multilayers. Phys. Rev. B 84, 012404 (2011).

  17. 17

    Methfessel, S. Potential application of magnetic rare earth compounds. IEEE Trans. Magn. 1, 144–155 (1965).

  18. 18

    Ascher, E., Rider, H., Schimid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

  19. 19

    Awschalom, D. D. & Kawakami, R. K. Teaching magnets new tricks. Nature 408, 923–924 (2000).

  20. 20

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000). This was the first report of voltage-induced magnetization phase transitions in magnetic materials.

  21. 21

    Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nature Phys. 6, 22–25 (2010).

  22. 22

    Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

  23. 23

    Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195295 (2001).

  24. 24

    Nishitani, Y. et al. Curie temperature versus hole concentration in field-effect structures of Ga1–xMnxAs. Phys. Rev. B 81, 045208 (2010).

  25. 25

    Chang, H. W., Akita, S., Matsukura, F. & Ohno, H. Hole concentration dependence of the Curie temperature of (Ga,Mn)Sb in a field-effect structure. Appl. Phys. Lett. 103, 142402 (2013).

  26. 26

    Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structure. Phys. Rev. Lett. 88, 207204 (2002).

  27. 27

    Lee, H.–J., Helgren, E. & Hellman, F. Gate-controlled magnetic properties of the magnetic semiconductor (Zn,Co)O. Appl. Phys. Lett. 94, 212106 (2009).

  28. 28

    Li, L. et al. Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys. Rev. B 85, 174430 (2012).

  29. 29

    Nepal, N. et al. Electric field control of room temperature ferromagnetism in III–V dilute magnetic semiconductors. Appl. Phys. Lett. 94, 132505 (2009).

  30. 30

    Park, J. D. et al. A group-IV ferromagnetic semiconductors MnxGe1–x . Science 295, 651–654 (2002).

  31. 31

    Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

  32. 32

    Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-Fermion-mediated ferromagnetism in a topological insulator. Nature Phys. 8, 729–733 (2012).

  33. 33

    Xufeng, K. et al. Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13, 4587–4593 (2013).

  34. 34

    Chiba, D. et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys. Rev. Lett. 104, 106601 (2010).

  35. 35

    Chiba, D., Matsukura, F. & Ohno, H. Electrically defined ferromagnetic nanodots. Nano Lett. 10, 4505–4508 (2010).

  36. 36

    Chiba, D., Yamanouchi, F., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003). This was the first report of electric-field control of coercivity and electric-field-assisted magnetization reversal in magnetic materials.

  37. 37

    Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008). This was the first report of voltage control of magnetic anisotropy in magnetic materials.

  38. 38

    Stöhr, J., Siegmann, H. C., Kashuna, A. & Gamble, S. J. Magnetization switching without charge or spin currents. Appl. Phys. Lett. 94, 072504 (2009).

  39. 39

    Balestriere, P., Devolder, T., Wunderlich, J. & Chappert, C. Electric field induced anisotropy modification in (Ga,Mn)As: A strategy for the precessional switching of the magnetization. Appl. Phys. Lett. 96, 142504 (2010).

  40. 40

    Chiba, D., Nakatani, Y., Matsukura, F. & Ohno, H. Simulation of magnetization switching by electric-field manipulation of magnetic anisotropy. Appl. Phys. Lett. 96, 192596 (2010).

  41. 41

    Chiba, D., Ono, T., Matsukura, F. & Ohno, H. Electric field control of thermal stability and magnetization switching in (Ga,Mn)As. Appl. Phys. Lett. 103, 142418 (2013).

  42. 42

    Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-assisted domain wall motion in ferromagnetic semiconductors. Jpn. J. Appl. Phys. 45, 3854–3859 (2006).

  43. 43

    Weisheit, M. et al. Electric-field induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007). This was the first report of voltage control of coercivity in ferromagnetic metals.

  44. 44

    Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

  45. 45

    Duan, C.-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

  46. 46

    Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

  47. 47

    Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

  48. 48

    Nakamura, K. et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 102, 287201 (2009).

  49. 49

    Nakamura, K., Akiyama, T., Ito, T., Weinert, M. & Freeman, A. J. Role of an interfacial FeO layer in the electric-field-driven switching of magnetocrystalline anisotropy at the Fe/MgO interface. Phys. Rev. B 81, 220409(R) (2010).

  50. 50

    Bonell, F. et al. Reversible change in the oxidation state and magnetic circular dichroism of Fe driven by an electric field at the FeCo/MgO interface. Appl. Phys. Lett. 102, 152401 (2013).

  51. 51

    Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nature Mater. 11, 64–68 (2012).

  52. 52

    Shiota, Y. et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2, 063001 (2009).

  53. 53

    Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012). This was the first report of voltage-induced magnetization switching in a ferromagnetic metal.

  54. 54

    Kanai, S. et al. Electric field-induced magnetization reversal in perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).

  55. 55

    Kanai, S. et al. In-plane magnetic field dependence of electric field-induced magnetization switching. Appl. Phys. Lett. 103, 074208 (2013).

  56. 56

    Kanai, S. et al. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric-field effect. Appl. Phys. Lett. 104, 212406 (2014).

  57. 57

    Nozaki, T. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nature Phys. 8, 491–496 (2012).

  58. 58

    Zhu, J. et al. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).

  59. 59

    Mizunuma, K. et al. Size dependence of magnetic properties of nanoscale CoFeB–MgO magnetic tunnel junctions with perpendicular magnetic easy axis observed by ferromagnetic resonance. Appl. Phys. Express 6, 063002 (2013).

  60. 60

    Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Mater. 10, 853–856 (2011).

  61. 61

    Gerhard, L. et al. Magnetoelectric coupling at metal surfaces. Nature Nanotech. 5, 792–797 (2010).

  62. 62

    Schellekens, A. J., van den Brink, A., Franken, J. H., Swagten, H. J. M. & Koopmans, B. Nature Commun. 3, 847 (2012).

  63. 63

    Chiba, D. et al. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nature Commun. 3, 888 (2012).

  64. 64

    Bauer, U., Emori, S. & Beach, S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nature Nanotech. 8, 411–416 (2013).

  65. 65

    Tokura, Y. Multiferroics – toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145–1150 (2007).

  66. 66

    Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

  67. 67

    Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

  68. 68

    Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008); corrigendum 7, 678 (2008).

  69. 69

    Wu, S. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010).

  70. 70

    Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011). This was the first report of electric field-induced magnetization reversal in a ferromagnet–multiferrioics heterostructure at room temperature.

  71. 71

    Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

  72. 72

    Ratcliff, W. II et al. Electric-field-controlled antiferromagnetic domains in epitaxial BiFeO3 thin films probed by neutron diffraction. Phys. Rev. B 87, 140405(R) (2013).

  73. 73

    Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, Ch. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005). This was the first report of magnetoelectric switching of exchange bias in a ferromagnet–multiferrioics heterostructure.

  74. 74

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nature Mater. 9, 579–585 (2010).

  75. 75

    Echtenkamp, W. & Binek, Ch. Electric control of exchange bias training. Phys. Rev. Lett. 111, 187204 (2013).

  76. 76

    Laukhin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

  77. 77

    Skumryev, V. et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).

  78. 78

    Nogues, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

  79. 79

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

  80. 80

    Wu, N. et al. Imaging and control of surface magnetization domains in a magnetoelectric antiferromagnet. Phys. Rev. Lett. 106, 087202 (2011).

  81. 81

    Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

  82. 82

    Arima, T. Spin-driven ferroelectricity and magneto-electric effects in frustrated magnetic systems. J. Phys. Soc. Jpn 80, 052001 (2011).

  83. 83

    Okumura, K., Haruki, K., Ishihara, T., Hirose, S. & Kimura, T. Multilevel magnetization switching by electric field in c-axis oriented polycrystalline Z-type hexaferrite. Appl. Phys. Lett. 103, 032906 (2013).

  84. 84

    Murakawa, H., Onose, Y. & Tokura, Y. Electric-field switching of a magnetic propagation vector in a helimagnet. Phys. Rev. Lett. 103, 147201 (2009).

  85. 85

    Yamasaki, Y. et al. Electrical control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).

  86. 86

    Lottermoser, T. et al. Magnetic phase control by an electric field effect. Nature 430, 541–544 (2004).

  87. 87

    Saito, M., Ishikawa, K., Konno, S., Taniguchi, K. & Arima, T. Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field. Nature Mater. 8, 634–638 (2009).

  88. 88

    Chun, S. H. et al. Electric field control of non-volatile four-state magnetization at room temperature. Phys. Rev. Lett. 108, 177201 (2012).

  89. 89

    Hearmon, A. J. et al. Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2 . Phys. Rev. Lett. 108, 237201 (2012).

  90. 90

    Ghidini, M. et al. Non-volatile electrically driven repeatable magnetization reversal with no applied magnetic field. Nature Commun. 4, 1453 (2012).

  91. 91

    Tokunaga, Y., Iguchi, S., Arima, T. & Tokura, Y. Magnetic-field-induced ferroelectric state in DyFeO3 . Phys. Rev. Lett. 101, 097205 (2008).

  92. 92

    Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nature Mater. 8, 558–562 (2009).

  93. 93

    Tokunaga, Y., Taguchi, Y., Arima, T. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nature Phys. 8, 838–844 (2012). This was the first report of electric field-induced magnetization reversal in single-component multiferroics.

  94. 94

    Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

  95. 95

    Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

  96. 96

    Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

  97. 97

    Takahashi, Y., Shimano, R., Kaneko, Y., Murakawa, H. & Tokura, Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nature Phys. 8, 121–125 (2012). This was the first report of the observation of the optical magnetoelectric effect mediated by electromagnons in perovskite.

  98. 98

    Takahashi, Y., Yamasaki, Y. & Tokura, Y. Terahertz magnetoelectric resonance enhanced by mutual coupling of electromagnons, Phys. Rev. Lett. 111, 037204 (2013).

  99. 99

    Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).

  100. 100

    Piemov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).

  101. 101

    Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 132701 (2005).

  102. 102

    Ishiwata, S., Taguchi, Y., Murakawa, H., Onose, Y. & Tokura, Y. Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643–1646 (2008).

  103. 103

    Kézsmárki, I. et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011).

  104. 104

    Bordács, S. et al. Chirality of matter shows up via spin excitations. Nature Phys. 8, 734–738 (2012).

  105. 105

    Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4 . Phys. Rev. Lett. 101, 117402 (2008).

  106. 106

    Tokura, Y., Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).

  107. 107

    Vaz, C. A. F., Hoffman, J., Ahn, C. H. & Ramesh, R. Magnetoelectric coupling effects in mutliferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010).

  108. 108

    Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

  109. 109

    Vaz, C. A. F. et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010).

  110. 110

    Burton, J. D. & Tsymbal, E. Y. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80, 174406 (2009).

  111. 111

    Lu, H. et al. Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces. Appl. Phys. Lett. 100, 232904 (2012).

  112. 112

    Yin, Y. W. et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Mater. 12, 397–402 (2013).

  113. 113

    Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010). This was the first report of non-volatile electrical control of carrier spin-polarization in ferroelectric tunnel junctions.

  114. 114

    Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electric switching of spin polarization in multiferroic tunnel junctions. Nature Mater. 11, 289–293 (2012).

  115. 115

    Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

  116. 116

    Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nature Mater. 10, 753–758 (2011).

  117. 117

    Radaelli, G. et al. Electric control of magnetism at the Fe/BaTiO3 interface. Nature Commun. 5, 3404–3412 (2014).

  118. 118

    Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

  119. 119

    Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

  120. 120

    Kohda, M., Bergsten, T. & Nitta, J. Manipulating spin-orbit interaction in semiconductors. J. Phys. Soc. Jpn 77, 0310008 (2008).

  121. 121

    Ishihara, J., Ohno, Y. & Ohno, H. Direct imaging of gate-controlled persistent spin helix state in a modulation-doped GaAs/AlGaAs quantum well. Appl. Phys. Express 7, 013001 (2014).

  122. 122

    Sanada, H. et al. Gate control of dynamic nuclear polarization in GaAs quantum wells. Phys. Rev. Lett. 94, 097601 (2005).

  123. 123

    Ono, M., Ishihara, J., Sato, G., Ohno, Y. & Ohno, H. Coherent manipulation of nuclear spins in semiconductors with an electric field. Appl. Phys. Express 6, 033002 (2013).

  124. 124

    Ueno, K. et al. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn 83, 032001 (2014).

  125. 125

    Sun, Y., Burton, J. D. & Tsymbal, E. Y. Electrically driven magnetism on a Pd thin film. Phys. Rev. B 81, 064413 (2010).

  126. 126

    Shimizu, S. et al. Electrically tunable anomalous Hall effect in Pt thin films. Phys. Rev. Lett. 111, 21603 (2013).

Download references

Acknowledgements

The authors thank T. Dietl and S. Kanai for discussions, as well as Y. Tokunaga and Y. Takahashi for useful discussions and help in preparing the manuscript. The work was supported in part by JSPS through the FIRST programme, and Research and Development Project for ICT Key Technology of MEXT.

Author information

Correspondence to Hideo Ohno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nature Nanotech 10, 209–220 (2015). https://doi.org/10.1038/nnano.2015.22

Download citation

Further reading