Harnessing structural darkness in the visible and infrared wavelengths for a new source of light


Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98–99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of 100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: From a complex porous system to a nanostructured black body for light.
Figure 2: Optical black body, the fabrication of which occurs via seeded growth of Au nanospheres from Au nanorods.
Figure 3: Tuning the structural darkness of the samples.
Figure 4: Absorption experimental results.
Figure 5: Absorption of planar thin films.
Figure 6: Light condensation with dark nanoparticles.


  1. 1

    Cao, A., Zhang, X., Xu, C., Wei, B. & Wu, D. Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption. Solar Energy Mater. Solar Cells 70, 481–486 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Lira-Cantú, M., Morales Sabio, A., Brustenga, A. & Gómez-Romero, P. Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells. Solar Energy Mater. Solar Cells 87, 685–694 (2005).

    Article  Google Scholar 

  3. 3

    Lehman, J. et al. Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate. Nano Lett. 10, 3261–3266 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nature Nanotech. 9, 126–130 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Teperik, T. V. et al. Omnidirectional absorption in nanostructured metal surfaces. Nature Photon. 2, 299–301 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Aydin, K., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Commun. 2, 517 (2011).

  8. 8

    Cui, Y. et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Mater. 12, 20–24 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Milonni, P. W. The Quantum Vacuum (Academic, 1994).

    Google Scholar 

  11. 11

    Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Huang, Y.-F. et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotech. 2, 770–774 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Yang, Z.-P., Ci, L., Bur, J. A., Lin, S.-Y. & Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 8, 446–451 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Selvakumar, N., Krupanidhi, S. & Barshilia, H. C. Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber. Adv. Mater. 26, 2552–2557 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Matsumoto, T., Koizumi, T., Kawakami, Y., Okamoto, K. & Tomita, M. Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements. Opt. Express 21, 30964–30974 (2013).

    Article  Google Scholar 

  19. 19

    Zhu, J. et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2008).

    Article  Google Scholar 

  20. 20

    Liu, C. et al. Enhanced energy storage in chaotic optical resonators. Nature Photon. 7, 473–478 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Conti, C. et al. Condensation in disordered lasers: theory, 3D+1 simulations, and experiments. Phys. Rev. Lett. 101, 143901 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Weill, R., Fischer, B. & Gat, O. Light-mode condensation in actively-mode-locked lasers. Phys. Rev. Lett. 104, 173901 (2010).

    Article  Google Scholar 

  24. 24

    Fratalocchi, A. Mode-locked lasers: light condensation. Nature Photon. 4, 502–503 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Vukusic, P., Hallam, B. & Noyes, J. Brilliant whiteness in ultrathin beetle scales. Science 315, 348 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Pendry, J., Aubry, A., Smith, D. & Maier, S. Transformation optics and subwavelength control of light. Science 337, 549–552 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Verdeyen, J. T. Laser Electronics (Prentice Hall, 1995).

    Google Scholar 

  31. 31

    Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Phys. 4, 794–798 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Carbone, L. & Cozzoli, P. D. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Huang, J. et al. Site-specific growth of AuPd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. J. Am. Chem. Soc. 135, 8552–8561 (2013).

    CAS  Article  Google Scholar 

Download references


This work is part of the Kaust research programme ‘Optics and plasmonics for efficient energy harvesting’, supported by award no. CRG-1-2012-FRA-005. Y.H. acknowledges baseline support funds from Kaust.

Author information




A.F. coordinated all theoretical research and the experimental research on the condensation of light. Y.H. coordinated all aspects of the fabrication technology. J.H. and Y.Z. fabricated the samples. C.L. and J.H. performed linear absorption measurements. C.L., J.H., S.M., E.A. and A.F. performed experiments on the condensation of light. All authors contributed equally to the analysis of experimental results and to the preparation of the manuscript.

Corresponding authors

Correspondence to Yu Han or Andrea Fratalocchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 19800 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, C., Zhu, Y. et al. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotech 11, 60–66 (2016). https://doi.org/10.1038/nnano.2015.228

Download citation

Further reading