Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering


Unambiguous chemical identification of individual molecules closely packed on a surface can offer the possibility to address single chemical species and monitor their behaviour at the individual level1,2,3. Such a degree of spatial resolution can in principle be achieved by detecting their vibrational fingerprints using tip-enhanced Raman scattering (TERS)4,5,6,7,8,9,10. The chemical specificity of TERS can be combined with the high spatial resolution of scanning probe microscopy techniques11,12,13, an approach that has stimulated extensive research in the field14,15,16,17,18,19,20,21,22,23,24,25,26,27,28. Recently, the development of nonlinear TERS in a scanning tunnelling microscope has pushed the spatial resolution down to 0.5 nm, allowing the identification of the vibrational fingerprints of isolated molecules on Raman-silent metal surfaces13. Although the nonlinear TERS component is likely to help sharpen the optical contrast of the acquired image, the TERS signal still contains a considerable contribution from the linear term, which is spatially less confined. Therefore, in the presence of different adjacent molecules, a mixing of Raman signals may result. Here, we show that using a nonlinear scanning tunnelling microscope-controlled TERS set-up, two different adjacent molecules that are within van der Waals contact and of very similar chemical structure (a metal-centred porphyrin and a free-base porphyrin) on a silver surface can be distinguished in real space. In addition, with the help of density functional theory simulations, we are also able to determine their adsorption configurations and orientations on step edges and terraces.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of TERS spectra for ZnTPP and H2TBPP on Ag(111).
Figure 2: Distinguishing between ZnTPP and H2TBPP domains.
Figure 3: Distinguishing adjacent different molecules at step edges.


  1. Atkin, J. M. & Raschke, M. B. Optical spectroscopy goes intramolecular. Nature 498, 44–45 (2013).

    CAS  Article  Google Scholar 

  2. Gottfried, J. M. Where does it vibrate? Raman spectromicroscopy on a single molecule. Angew. Chem. Int. Ed. 52, 11202–11204 (2013).

    CAS  Article  Google Scholar 

  3. Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52, 5940–5954 (2013).

    CAS  Article  Google Scholar 

  4. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

    CAS  Article  Google Scholar 

  5. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    CAS  Article  Google Scholar 

  6. Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry 68, 942–949 (2000).

    CAS  Google Scholar 

  7. Stockle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    CAS  Article  Google Scholar 

  8. Berweger, S. & Raschke, M. B. Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique. Anal. Bioanal. Chem. 396, 115–123 (2010).

    CAS  Article  Google Scholar 

  9. Pettinger, B., Schambach, P., Villagomez, C. J. & Scott, N. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 63, 379–399 (2012).

    CAS  Article  Google Scholar 

  10. Sonntag, M. D., Pozzi, E. A., Jiang, N., Hersam, M. C. & Van Duyne, R. P. Recent advances in tip-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 5, 3125–3130 (2014).

    CAS  Article  Google Scholar 

  11. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Article  Google Scholar 

  12. Mauser, N. & Hartschuh, A. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev. 43, 1248–1262 (2014).

    CAS  Article  Google Scholar 

  13. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    CAS  Article  Google Scholar 

  14. Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005).

    CAS  Article  Google Scholar 

  15. Domke, K. F., Zhang, D. & Pettinger, B. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc. 128, 14721–14727 (2006).

    CAS  Article  Google Scholar 

  16. Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

    Article  Google Scholar 

  17. Domke, K. F., Zhang, D. & Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 129, 6708–6709 (2007).

    CAS  Article  Google Scholar 

  18. Ichimura, T. et al. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. J. Phys. Chem. C 111, 9460–9464 (2007).

    CAS  Article  Google Scholar 

  19. Steidtner, J. & Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008).

    Article  Google Scholar 

  20. Bailo, E. & Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. 47, 1658–1661 (2008).

    CAS  Article  Google Scholar 

  21. Yano, T., Verma, P., Saito, Y., Ichimura, T. & Kawata, S. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nature Photon. 3, 473–477 (2009).

    CAS  Article  Google Scholar 

  22. Zhang, D., Domke, K. F. & Pettinger, B. Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au(111). ChemPhysChem 11, 1662–1665 (2010).

    CAS  Article  Google Scholar 

  23. Liu, Z. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nature Commun. 2, 305 (2011).

    Article  Google Scholar 

  24. Deckert-Gaudig, T., Kammer, E. & Deckert, V. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. J. Biophoton. 5, 215–219 (2012).

    CAS  Article  Google Scholar 

  25. Sonntag, M. D. et al. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 478–483 (2012).

    CAS  Article  Google Scholar 

  26. Klingsporn, J. M. et al. Intramolecular insight into adsorbate–substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 136, 3881–3887 (2014).

    CAS  Article  Google Scholar 

  27. Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nature Commun. 5, 3312 (2014).

    Article  Google Scholar 

  28. Najjar, S. et al. Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J. Phys. Chem. C 118, 1174–1181 (2014).

    CAS  Article  Google Scholar 

  29. Dong, Z. C. et al. Generation of molecular hot electroluminescence by resonant nano-cavity plasmons. Nature Photon. 4, 50–54 (2010).

    CAS  Article  Google Scholar 

  30. Pettinger, B., Domke, K. F., Zhang, D., Picardi, G. & Schuster, R. Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement. Surf. Sci. 603, 1335–1341 (2009).

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Basic Research Program of China, the Strategic Priority Research Program of the Chinese Academy of Sciences and the National Natural Science Foundation of China. The density functional theory simulations were performed in the Supercomputing Center of the University of Science and Technology of China.

Author information

Authors and Affiliations



Z.C.D. and J.G.H. conceived and designed the experiments. S.J., R.Z., C.R.H., M.H.L. and Z.C.D. performed experiments and analysed data. S.J., Y.Z., Y.L., J.L.Y. and Z.C.D. contributed to data interpretation and theoretical simulations. Z.C.D., S.J., Y.L. and J.G.H. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhenchao Dong or J. G. Hou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1362 kb)

Supplementary Movie 1

Supplementary Movie 1 (GIF 1324 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Zhang, Y., Zhang, R. et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nature Nanotech 10, 865–869 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research