Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene


An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale three-dimensional printing, catalysis and sensor design1,2,3,4. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores5,6,7,8,9,10,11,12,13,14,15,16,17,18. Here, we show that gas flux through discrete ångström-sized pores in monolayer graphene can be detected and then controlled using nanometre-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid-state nanopores19.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fabrication of molecular valves in suspended graphene.
Figure 2: Controlling the leak rate by laser-induced heating.
Figure 3: Leak rates of gases through porous monolayer suspended graphene without gold nanoparticles.
Figure 4: Stochastic switching of the leak rate through porous monolayer graphene without gold nanoparticles.


  1. Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  2. Albrecht, P. M., Barraza-Lopez, S. & Lyding, J. W. Preferential orientation of a chiral semiconducting carbon nanotube on the locally depassivated Si(100)–2×1:H surface identified by scanning tunneling microscopy. Small 3, 1402–1406 (2007).

    Article  CAS  Google Scholar 

  3. Chen, P. et al. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 43, 1107–1117 (2014).

    Article  CAS  Google Scholar 

  4. Imboden, M. et al. Building a fab on a chip. Nanoscale 6, 5049–5062 (2014).

    Article  CAS  Google Scholar 

  5. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

    Article  CAS  Google Scholar 

  6. Strathmann, H. Membrane separation processes: current relevance and future opportunities. AIChE J. 47, 1077–1087 (2001).

    Article  CAS  Google Scholar 

  7. Lai, Z. P. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300, 456–460 (2003).

    CAS  Google Scholar 

  8. Shiflett, M. B. & Foley, H. C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science 285, 1902–1905 (1999).

    Article  CAS  Google Scholar 

  9. Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  CAS  Google Scholar 

  10. Ahn, J. Y., Chung, W. J., Pinnau, I. & Guiver, M. D. Poly sulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membrane Sci. 314, 123–133 (2008).

    Article  CAS  Google Scholar 

  11. de Vos, R. M. & Verweij, H. High-selectivity, high-flux silica membranes for gas separation. Science 279, 1710–1711 (1998).

    Article  CAS  Google Scholar 

  12. Jiang, D. E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).

    Article  CAS  Google Scholar 

  13. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  CAS  Google Scholar 

  14. Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    Article  CAS  Google Scholar 

  15. Boutilier, M. S. H. et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8, 841–849 (2014).

    Article  CAS  Google Scholar 

  16. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  17. Drahushuk, L. W. & Strano, M. S. Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28, 16671–16678 (2012).

    Article  CAS  Google Scholar 

  18. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  19. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  20. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  CAS  Google Scholar 

  21. Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    Article  CAS  Google Scholar 

  22. Park, J. Y., Yaish, Y., Brink, M., Rosenblatt, S. & McEuen, P. L. Electrical cutting and nicking of carbon nanotubes using an atomic force microscope. Appl. Phys. Lett. 80, 4446–4448 (2002).

    Article  CAS  Google Scholar 

  23. Koenig, S. P., Wang, L. D., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nature Nanotech. 7, 728–732 (2012).

    Article  CAS  Google Scholar 

  24. Ozeki, S., Ito, T., Uozumi, K. & Nishio, I. Scanning tunneling microscopy of UV-induced gasification reaction on highly oriented pyrolytic graphite. Jpn. J. Appl. Phys. 35, 3772–3774 (1996).

    Article  CAS  Google Scholar 

  25. Sun, C. et al. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30, 675–682 (2013).

    Article  Google Scholar 

  26. Reif, F. Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).

    Google Scholar 

  27. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nature Nanotech. 6, 543–546 (2011).

    Article  CAS  Google Scholar 

  28. Liu, H., Dai, S. & Jiang, D.-E. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics. Nanoscale 5, 9984–9987 (2013).

    Article  CAS  Google Scholar 

  29. Shan, M. et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4, 5477–5482 (2012).

    Article  CAS  Google Scholar 

  30. Jin, H., Heller, D. A., Kim, J. H. & Strano, M. S. Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. Nano Lett. 8, 4299–4304 (2008).

    Article  CAS  Google Scholar 

  31. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  Google Scholar 

  32. Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L. & Orlandi, G. On the mechanism of the cistrans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1 . J. Am. Chem. Soc. 126, 3234–3243 (2004).

    Article  CAS  Google Scholar 

  33. Wang, L. D. et al. Ultrathin oxide films by atomic layer deposition on graphene. Nano Lett. 12, 3706–3710 (2012).

    Article  CAS  Google Scholar 

Download references


The authors thank X. Yin for useful discussions and A. Swan, B. Goldberg and J. Christopher for assistance with Raman spectroscopy. This work was supported by the National Science Foundation (NSF), grant no. 1054406 (CMMI: CAREER, Atomic Scale Defect Engineering in Graphene Membranes), the NSF Industry/University Cooperative Research Center for Membrane Science, Engineering and Technology (MAST), in part by the National Nanotechnology Infrastructure Network (NNIN) and the NSF under grant no. ECS-0335765 and the NSF Graduate Research Fellowship under grant no. DGE-1247312. The theory and modelling part was supported (in part) by the US Army Research Office under contract no. W911NF-13-D-0001.

Author information

Authors and Affiliations



L.W., L.C. and S.P.K. performed the experiments. L.W. and J.S.B. conceived and designed the experiments. L.W.D. and M.S.S. developed the theory and modelling. L.W., L.C., S.P.K. and X.L. prepared and fabricated the samples. L.W., L.W.D., J.P., M.S.S. and J.S.B. interpreted the results and co-wrote the manuscript.

Corresponding author

Correspondence to J. Scott Bunch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Drahushuk, L., Cantley, L. et al. Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nature Nanotech 10, 785–790 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research