Letter | Published:

Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

Nature Nanotechnology volume 9, pages 425429 (2014) | Download Citation

Abstract

Einstein realized that the fluctuations of a Brownian particle can be used to ascertain the properties of its environment1. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes2,3, providing insight into soft matter physics4,5,6 and leading to applications from energy harvesting to medical imaging7,8. Here, we use heated optically levitated nanospheres to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and provides a means for testing non-equilibrium thermodynamics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (Berlin) 322, 549–560 (1905).

  2. 2.

    et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011).

  3. 3.

    et al. Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483, 187–189 (2012).

  4. 4.

    & Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009).

  5. 5.

    , & Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

  6. 6.

    et al. Three-dimensional thermal noise imaging. Appl. Phys. Lett. 79, 3878–3880 (2001).

  7. 7.

    & Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

  8. 8.

    et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).

  9. 9.

    & Brownian motion of a particle levitated in vacuum. J. Vac. Sci. Technol. A 10, 243–247 (1992).

  10. 10.

    , , & Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010).

  11. 11.

    & Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nature Nanotech. 7, 448–452 (2012).

  12. 12.

    , , , & Hot Brownian motion. Phys. Rev. Lett. 105, 090604 (2010).

  13. 13.

    , , & Heat flux and entropy produced by thermal fluctuations. Phys. Rev. Lett. 110, 180601 (2013).

  14. 14.

    , , & Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010).

  15. 15.

    , & Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010).

  16. 16.

    Thermal accommodation coefficients. J. Phys. Chem. 84, 1431–1445 (1980).

  17. 17.

    On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710–733 (1924).

  18. 18.

    , & Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

  19. 19.

    et al. Optical tweezers computational toolbox. J. Opt. A 9, S196–S203 (2007).

  20. 20.

    .

  21. 21.

    , , & Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator. J. Chem. Phys. 135, 084313 (2011).

  22. 22.

    & Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles. J. Phys. Chem. B 108, 6216–6221 (2004).

  23. 23.

    & Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333–335 (1976).

  24. 24.

    et al. Dynamics of levitated nanospheres: towards the strong coupling regime. New J. Phys. 15, 015001 (2013).

  25. 25.

    , & Parameter exploration of optically trapped liquid aerosols. Phys. Rev. E 82, 051123 (2010).

  26. 26.

    , & Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

  27. 27.

    , , & Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

  28. 28.

    et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

  29. 29.

    , , & Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

  30. 30.

    et al. Spatially-resolved rotational microrheology with an optically-trapped sphere. Sci. Rep. 3, 01759 (2013).

  31. 31.

    , , , & Optical tweezers applied to a microfluidic system. Lab Chip 4, 196–200 (2004).

  32. 32.

    Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008).

Download references

Acknowledgements

The authors thank I. Ford for discussions and I. Llorente Garcia, D. Duffy and I. Ford for critical reading of the manuscript. J.M. and P.B. acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) of the UK (EP/H050434/1). T.D. is supported by the Royal Thai Government and the EPSRC. J.A. is supported by the Royal Society. This work was supported by the European COST network MP1209.

Author information

Affiliations

  1. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

    • J. Millen
    • , P. Barker
    •  & J. Anders
  2. Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK

    • T. Deesuwan
  3. Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK

    • T. Deesuwan
    •  & J. Anders

Authors

  1. Search for J. Millen in:

  2. Search for T. Deesuwan in:

  3. Search for P. Barker in:

  4. Search for J. Anders in:

Contributions

J.M. and P.B. designed the experiments. J.M. performed the experiments, analysed the data and performed error analysis. T.D and J.A. developed the two-bath model. J.A. derived the damping rate. P.B. performed the field simulation. All authors contributed to data analysis and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to J. Millen or J. Anders.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2014.82

Further reading