Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multifunctional wearable devices for diagnosis and therapy of movement disorders

Abstract

Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Wearable electronic patch composed of data storage modules, diagnostic tools and therapeutic actuating elements.
Figure 2: Langmuir–Blodgett assembly and SAM functionalization process.
Figure 3: Electrical characteristics of RRAMs in MIM, MISIM and MINIM structures.
Figure 4: Skin-conformable RRAM array with mechanical stretchability and chemical stability.
Figure 5: In vivo motion detection and data storage test.
Figure 6: Controlled transdermal drug delivery using the electroresistive heater and drug-loaded m-silica NPs.

References

  1. 1

    Lobodzinski, S. S. & Laks, M. M. New devices for very long-term ECG monitoring. Cardiol. J. 19, 210–214 (2012).

    Article  Google Scholar 

  2. 2

    Stacey, W. C. & Litt, B. Technology insight: neuroengineering and epilepsy-designing devices for seizure control. Nature Clin. Pract. Neurol. 4, 190–201 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Lotharius, J. & Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and α-synuclein. Nature Rev. Neurosci. 3, 932–942 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Kringelbach, M. L., Jenkinson, N., Owen, S. L. F. & Aziz, T. Z. Translational principles of deep brain stimulation. Nature Rev. Neurosci. 8, 623–635 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nature Mater. 9, 1015–1022 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Kim, D-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Kim, D. K. et al. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nature Commun. 3, 1216 (2012).

    Article  Google Scholar 

  10. 10

    Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010).

    Article  Google Scholar 

  11. 11

    Kim, D-H. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater. 10, 316–323 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neurosci. 14, 1599–1605 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nature Commun. 4, 1575 (2013).

    Article  Google Scholar 

  14. 14

    Kim, D-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Chuan, W. et al. User-interactive electronic skin for instantaneous pressure visualization. Nature Mater. 12, 899–904 (2013).

    Article  Google Scholar 

  17. 17

    Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med 4, 122ra121 (2012).

    Article  Google Scholar 

  19. 19

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Kwon, D-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148–153 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Kang, N-G. et al. Structural and electrical characterization of a block copolymer-based unipolar nonvolatile memory device. Adv. Mater. 24, 385–390 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nature Biotechnol. 26, 1261–1268 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Sungho, K. & Choi, Y-K. A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM. IEEE Trans. Electron. Dev. 56, 3049–3054 (2009).

    Article  Google Scholar 

  27. 27

    Tao, A. R., Huang, J. & Yang, P. Langmuir–Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662–1673 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Talapin, D. V., Lee, J-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2009).

    Article  Google Scholar 

  29. 29

    Lu, X., Tuan, H-Y., Korgel, B. A. & Xia, Y. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem. Eur. J. 14, 1584–1591 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Yamada, Y. et al. Nanocrystal bilayer for tandem catalysis. Nature Chem. 3, 372–376 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Shang, D. S. et al. Effect of carrier trapping on the hysteretic current–voltage characteristics in AgLa0.7Ca0.3MnO3Pt heterostructures. Phys. Rev. B 73, 245427 (2006).

    Article  Google Scholar 

  32. 32

    Kim, K. M. et al. A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22, 254010 (2011).

    Article  Google Scholar 

  33. 33

    Jeong, H. Y. et al. Interface-engineered amorphous TiO2-based resistive memory devices. Adv. Funct. Mater. 20, 3912–3917 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Lee, J. E. et al. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44, 893–902 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2, 751–760 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Kim, T.-i. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Sekitani, T. et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nature Mater. 6, 413–417 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science. This work was also supported by a grant (2013M3A6A5073180) from the Center for Advanced Soft Electronics under the Global Frontier Research Program of the Ministry of Science, ICT and Future Planning, Korea, and by a grant from the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (2012R1A1A1004925). N.L. acknowledges startup funding from the Cockrell School of Engineering of the University of Texas at Austin. C.S.H. acknowledges support from the Global Research Laboratory Program (2012040157) through the NRF.

Author information

Affiliations

Authors

Contributions

D.S., J.L. and D-H.K. designed the experiments. D.S., J.L., S.Q., R.G., J.K., S.J.K., S.Y., C.S., J.E.L., D.J.L., S.W.J., M.P., J.S., K.D., M.L., K.K., C.S.H., N.L., T.H. and D-H.K. performed experiments and analysis. D.S., J.L., S.Q., J.L., R.G., J.K., C.S.H., N.L., T.H. and D-H.K. wrote the paper.

Corresponding author

Correspondence to Dae-Hyeong Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3733 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Son, D., Lee, J., Qiao, S. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotech 9, 397–404 (2014). https://doi.org/10.1038/nnano.2014.38

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research