Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale NMR spectroscopy and imaging of multiple nuclear species

This article has been updated


Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging1. However, the spatial resolution of conventional NMR and MRI is limited2 to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen–vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system3,4,5. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to 100–1,000 spins in uniform samples covering the surface of a bulk diamond chip6,7. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (20 mT) using two complementary sensor modalities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: NV NMR experiment.
Figure 2: Multi-species nanoscale NMR with a single shallow NV centre.
Figure 3: Multi-species nanoscale NMR with a shallow NV ensemble.
Figure 4: Optical MRI of multi-species sample with sub-micrometre structure.
Figure 5: Determination of surface proton layer thickness.

Change history

  • 16 January 2015

    In the version of this Letter originally published online, in Fig. 4f, there was a superfluous blue curve. This error has now been corrected in all versions of the Letter.


  1. Mansfield, P. Snapshot magnetic resonance imaging (Nobel lecture). Angew. Chem. Int. Ed. 43, 5456–5464 (2004).

    Article  CAS  Google Scholar 

  2. Glover, P. & Mansfield, P. Limits to magnetic resonance microscopy. Rep. Progr. Phys. 65, 1489 (2002).

    Article  Google Scholar 

  3. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  4. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  5. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  6. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen vacancy center. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  7. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  8. Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

    Article  CAS  Google Scholar 

  9. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007).

    Article  CAS  Google Scholar 

  10. Nowack, K. C. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nature Mater. 12, 787–791 (2013).

    Article  CAS  Google Scholar 

  11. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  12. Degen, C., Poggio, M., Mamin, H., Rettner, C. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    Article  CAS  Google Scholar 

  13. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  CAS  Google Scholar 

  14. Bar-Gill, N. et al. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nature Commun. 3, 858 (2012).

    Article  CAS  Google Scholar 

  15. Belthangady, C. et al. Dressed-state resonant coupling between bright and dark spins in diamond. Phys. Rev. Lett. 110, 157601 (2013).

    Article  CAS  Google Scholar 

  16. Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    Article  Google Scholar 

  17. Taminiau, T. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  CAS  Google Scholar 

  18. Grinolds, M. S. et al. Sub-nanometer resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech. 9, 279–284 (2014).

    Article  CAS  Google Scholar 

  19. Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013).

    Article  CAS  Google Scholar 

  20. Loretz, M., Pezzagna, S., Meijer, J. & Degen, C. L. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Appl. Phys. Lett. 104, 033102 (2014).

    Article  Google Scholar 

  21. Sushkov, A. O. et al. All-optical sensing of a single-molecule electron spin. Nano Lett. 14, 6443–6448 (2014).

    Article  CAS  Google Scholar 

  22. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    Article  CAS  Google Scholar 

  23. Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

    Article  CAS  Google Scholar 

  24. Pham, L. M. et al. Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys. 13, 045021 (2011).

    Article  Google Scholar 

  25. Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr–Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).

    CAS  Google Scholar 

  26. de Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multi-pulse dynamical decoupling sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article  CAS  Google Scholar 

  27. Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011).

    Article  Google Scholar 

  28. Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

    Article  CAS  Google Scholar 

  29. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. Solid-state electronic spin coherence time approaching one second. Nature Commun. 4, 1743 (2013).

    Article  CAS  Google Scholar 

  30. Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  31. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Phys. 7, 565–570 (2011).

    Article  CAS  Google Scholar 

  32. Hall, L. T., Cole, J. H., Hill, C. D. & Hollenberg, L. C. L. Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 220802 (2009).

    Article  CAS  Google Scholar 

  33. Fuller, G. H. Nuclear Spins and Moments (American Chemical Society, 1976).

  34. Mamin, H. et al. Isotope-selective detection and imaging of organic nanolayers. Nano Lett. 9, 3020–3024 (2009).

    Article  CAS  Google Scholar 

  35. Xue, F., Weber, D. P., Peddibhotla, P. & Poggio, M. Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample. Phys. Rev. B 84, 205328 (2011).

    Article  Google Scholar 

  36. Arai, K. et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Preprint at (2014).

  37. Kessler, E. M., Lovchinsky, I., Sushkov, A. O. & Lukin, M. D. Quantum error correction for metrology. Phys. Rev. Lett. 112, 150802 (2014).

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Science Foundation and the Defense Advanced Research Projects Agency QuASAR programme. F.C. acknowledges support from the Swiss National Science Foundation. I.L. acknowledges support from a National Defense Science and Engineering Graduate fellowship.

Author information

Authors and Affiliations



S.J.D.V. and L.M.P. contributed equally to this work. R.L.W., S.J.D., L.M.P. and N.B-G. conceived the idea of the study. S.J.D., L.M.P., I.L., A.O.S. and M.C. performed the measurements and analysed the data. F.C. and S.J.D. developed the model for describing the signal. H.Z. and C.B. created the SiO2 masks. M.D.L., H.P., R.L.W. and A.Y. conceived the NV-diamond wide-field magnetic imager and its applications. R.L.W. supervised the project. All authors discussed the results and participated in writing the manuscript.

Corresponding author

Correspondence to Ronald L. Walsworth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 370 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DeVience, S., Pham, L., Lovchinsky, I. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nature Nanotech 10, 129–134 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research