Review Article | Published:

Plasmon-induced hot carrier science and technology

Nature Nanotechnology volume 10, pages 2534 (2015) | Download Citation

Abstract

The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. Chem. 267, 983–1000 (1887).

  2. 2.

    Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905).

  3. 3.

    Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. 309, 553–563 (1901).

  4. 4.

    Photoelectron Spectroscopy: Principles and Applications (Springer, 2003).

  5. 5.

    , , & Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014). This paper proposes a theoretical model that shows how hot carrier production rate and energy distribution depend on the particle size and hot carrier lifetime.

  6. 6.

    Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 8, 95–103 (2014).

  7. 7.

    & Plasma resonance in the photoemission of silver. Phys. Status Solidi 30, K53–K56 (1968).

  8. 8.

    & Surface-plasmon-assisted photoemission. J. Opt. Soc. Am. 71, 1286–1288 (1981).

  9. 9.

    How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983). A key paper in plasmonics, which illustrates how subwavelength metallic nanoparticles can absorb light very effectively.

  10. 10.

    , , & Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

  11. 11.

    Surface enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

  12. 12.

    & Photophysics and photochemistry near surfaces and small particles. Surf. Sci. 158, 165–189 (1985).

  13. 13.

    , & Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

  14. 14.

    , & Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 15, 023011 (2013).

  15. 15.

    et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8, 3983–3988 (2008).

  16. 16.

    , , & Freund, H-J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

  17. 17.

    et al. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl. Phys. A Mater. Sci. Process. 78, 165–176 (2004).

  18. 18.

    , , & Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998).

  19. 19.

    & Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem. Rev. 106, 4207–4233 (2006).

  20. 20.

    et al. Fermi surface, surface states, and surface reconstruction in Sr2RuO4. Phys. Rev. Lett. 4, 2–5 (2000).

  21. 21.

    et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013). This paper shows how plasmonic nanoparticles can be used to control photoemission and acceleration of electrons.

  22. 22.

    , , & Optically driven surface reactions: Evidence for the role of hot electrons. Phys. Rev. Lett. 61, 1321–1324 (1988).

  23. 23.

    et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

  24. 24.

    , , & Femtosecond versus nanosecond surface photochemistry: O2+CO on Pt(111) at 80 K. Phys. Rev. Lett. 70, 4098–4101 (1993).

  25. 25.

    & Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

  26. 26.

    Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002).

  27. 27.

    & Theoretical model for enhanced photochemistry on rough surfaces. J. Chem. Phys. 75, 2205–2214 (1981).

  28. 28.

    Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

  29. 29.

    , , , & Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach. Phys. Rev. B 79, 195405 (2009).

  30. 30.

    et al. Time-resolved two-photon photoemission spectroscopy of HOPG and Ag nanoparticles on HOPG. Appl. Phys. B 68, 439–445 (1999).

  31. 31.

    et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

  32. 32.

    , & Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2012). This paper demonstrates that dissociation of H2 on gold nanoparticles can be accomplished at room temperature, despite a large activation energy.

  33. 33.

    , , & Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

  34. 34.

    , , , & Plasmon induced photovoltage and charge separation in citrate-stabilized gold nanoparticles. J. Phys. Chem. C 114, 12896–12899 (2010).

  35. 35.

    , , & The role of photon energy and semiconductor substrate in the plasmon-mediated photooxidation of citrate by silver nanoparticles. J. Phys. Chem. C 117, 26238–26247 (2013).

  36. 36.

    , , & Photoreduction at a distance: facile, nonlocal photoreduction of Ag ions in solution by plasmon-mediated photoemitted electrons. Nano Lett. 10, 1329–1334 (2010).

  37. 37.

    , , & Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater. 11, 1044–1050 (2012).

  38. 38.

    et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotech. 8, 247–252 (2013).

  39. 39.

    , & Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467–472 (2011). A very comprehensive study on the role of plasmonic Ag nanoparticles in enhancing hot-electron-driven catalytic oxidation reactions.

  40. 40.

    , & Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

  41. 41.

    , , & Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 46, 1890–1899 (2013).

  42. 42.

    et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

  43. 43.

    & Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J. Phys. Chem. C 118, 7606–7614 (2014). An insightful account on hot carrier generation in metal nanostructures versus bulk metals.

  44. 44.

    , & Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117, 16616–16631 (2013).

  45. 45.

    , , & Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011).

  46. 46.

    et al. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440–3446 (2011).

  47. 47.

    et al. Light trapping for solar fuel generation with Mie resonances. Nano Lett. 14, 1446–1452 (2014).

  48. 48.

    , , , & Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 11, 5548–5552 (2011).

  49. 49.

    , , , & Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012).

  50. 50.

    et al. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem. Int. Ed. 53, 7887–7891 (2014).

  51. 51.

    et al. Plasmon-induced doping of graphene. ACS Nano 6, 10222–10228 (2012).

  52. 52.

    et al. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14, 1127–1133 (2014).

  53. 53.

    et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014). This paper analyses the role of hot electrons in inducing structural phase transformations.

  54. 54.

    , & Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids. Nano Lett. 14, 1178–1183 (2014).

  55. 55.

    , & Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).

  56. 56.

    & Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

  57. 57.

    , , , & Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009).

  58. 58.

    , & Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010).

  59. 59.

    , , & Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009).

  60. 60.

    , , , & Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

  61. 61.

    et al. Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6, 2452–2458 (2012). This paper shows how to control and map temperature with high spatial resolution near metallic nanostructures.

  62. 62.

    et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003). A key paper that shows the potential use of plasmonic nanoparticle heating for thermal therapies.

  63. 63.

    , , & Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90, 619–627 (2006).

  64. 64.

    , , & Thin film patterning by surface-plasmon-induced thermocapillarity. Appl. Phys. Lett. 90, 044105 (2007).

  65. 65.

    , , , & Thermo-optical responses of nanoparticles: Melting of ice and nanocalorimetry approach. J. Electron. Mater. 36, 1587–1593 (2007).

  66. 66.

    , & All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).

  67. 67.

    , , , & Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592–2597 (2006). This paper demonstrates the use of plasmonic heating to grow nanostructures by chemical vapour deposition.

  68. 68.

    , , & Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

  69. 69.

    , , & Chemical separations by bubble-assisted interphase mass-transfer. Anal. Chem. 80, 2452–2456 (2008).

  70. 70.

    , , & Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

  71. 71.

    , & Electromagnetic control of chemical catalysis. US Patent 7,998,538 (2004).

  72. 72.

    , , & Young Investigator Award World Biomaterials Congress: Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

  73. 73.

    et al. Gold nanostoves for microsecond DNA melting analysis. Nano Lett. 8, 619–623 (2008).

  74. 74.

    , , & Reversible photothermal melting of DNA in DNA–gold-nanoparticle networks. Small 4, 607–610 (2008).

  75. 75.

    et al. Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating. Nano Lett. 13, 3140–3144 (2013).

  76. 76.

    et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl Acad. Sci. USA 110, 11677–11681 (2013).

  77. 77.

    & Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

  78. 78.

    , , , & Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

  79. 79.

    , , , & Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol. 179, 748–753 (2008).

  80. 80.

    et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

  81. 81.

    , & Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

  82. 82.

    On a kind of electrical current produced by ultra-violet rays. Phil. Mag. Ser. 5 26, 317–319 (1888).

  83. 83.

    An infrared detector utilizing internal photoemission. Proc. IEEE 55, 704–705 (1967). An early work showing the use of hot carrier emission to make photodetectors for low energy, infrared photons.

  84. 84.

    & Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett. 95, 021104 (2009).

  85. 85.

    & Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46, 633–643 (2010).

  86. 86.

    , , , & Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).

  87. 87.

    & Internal emission metal–semiconductor–metal photodetectors on Si and GaAs for 1.3 μm detection. Appl. Phys. Lett. 66, 2673–2675 (1995).

  88. 88.

    , & Detection of optical and infrared radiation with DC-biased electron-tunneling metal–barrier–metal diodes. IEEE J. Quantum Electron. 9, 737–745 (1973).

  89. 89.

    , , & Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron. 14, 159–169 (1978).

  90. 90.

    et al. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl Acad. Sci. USA 108, 13002–13006 (2011).

  91. 91.

    The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 107, 45–56 (1931).

  92. 92.

    Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds. Phys. Rev. 112, 114–122 (1958).

  93. 93.

    Negative affinity 3–5 photocathodes: Their physics and technology. Appl. Phys. 12, 115–130 (1977).

  94. 94.

    Simple model for collision effects in photoemission. Phys. Rev. 147, 335–339 (1966).

  95. 95.

    Simple model for internal photoemission. J. Appl. Phys. 42, 2274–2279 (1971).

  96. 96.

    , , & Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 9, 85–101 (2014).

  97. 97.

    et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Commun. 4, 1643 (2013).

  98. 98.

    , & Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014).

  99. 99.

    & Quantitative electron spectroscopy of surfaces. Surf. Interface Anal. 1, 2–11 (1979).

  100. 100.

    & Electron wave optics in semiconductors. J. Appl. Phys. 65, 814–820 (1989).

  101. 101.

    , , , & Model for quantum efficiency of guided mode plasmonic enhanced silicon Schottky detectors. Preprint at (2014).

  102. 102.

    , & Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014).

  103. 103.

    , , , & Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20, 28594–28602 (2012). This paper shows the possibility to realize high responsivity photodetectors that are integrated with a Si waveguide.

  104. 104.

    et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nature Nanotech. 8, 845–852 (2013).

  105. 105.

    , , & Infrared performance of symmetric surface-plasmon waveguide Schottky detectors in Si. J. Light. Technol. 29, 1852–1860 (2011).

  106. 106.

    , , & Photodetection with active optical antennas. Science 332, 702–704 (2011). This paper demonstrates the use of plasmonic antennas to tune the spectral response of a hot carrier detector.

  107. 107.

    , & Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 13, 1687–1692 (2013).

  108. 108.

    , , & Surface plasmon-driven hot electron flow probed with metal–semiconductor nanodiodes. Nano Lett. 11, 4251–4255 (2011).

  109. 109.

    et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

  110. 110.

    , , & Light-induced kinetic effects in solids. Phys. Rev. B 53, 11388–11402 (1996).

  111. 111.

    , , , & Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B 76, 235408 (2007).

  112. 112.

    & Photo-induced tunnel currents in Al–Al2O3–Au structures. Phys. Rev. B 12, 3452–3457 (1975).

  113. 113.

    , , & Plasmonically enhanced hot electron based photovoltaic device. Opt. Express 21, 7196–7201 (2013).

  114. 114.

    & Power-independent wavelength determination by hot carrier collection in metal–insulator–metal devices. Nature Commun. 4, 1711 (2013).

Download references

Acknowledgements

We thank all of the students and postdocs in our groups who are actively involved with hot electron research. We also greatly acknowledge support from the DOE Light–Material Interactions Energy Frontier Research Centre, an Energy Frontier Research Centre funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0001293. P.N. and N.J.H. acknowledge support from the Robert A. Welch Foundation through grants C-1220 and C-1222, and also acknowledge support through the AFOSR MURI programme.

Author information

Affiliations

  1. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA

    • Mark L. Brongersma
  2. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • Mark L. Brongersma
  3. Laboratory for Nanophotonics, Department of Electrical and Computer Engineering, Department of Physics and Astronomy, and Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA

    • Naomi J. Halas
    •  & Peter Nordlander

Authors

  1. Search for Mark L. Brongersma in:

  2. Search for Naomi J. Halas in:

  3. Search for Peter Nordlander in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Mark L. Brongersma or Naomi J. Halas or Peter Nordlander.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2014.311

Further reading