Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Spin transistors

Closer to an all-electric device

A Correction to this article was published on 09 April 2015

This article has been updated

The use of asymmetrically biased quantum point contacts in semiconductor heterostructures paves the way for the realization of an all-electric spin field-effect transistor.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of operation of the all-electric spin valve.

Change history

  • 27 February 2015

    In the version of this News & Views article previously published, the semiconductor heterostructure 'AlGaAs/GaAs' should have been 'InGaAs/InAlAs'. Corrected in the online versions after print.

References

  1. Datta, S. & Das, B. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  2. Zutic, I., Fabian, J. & Sarma, S. D. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  3. Bandyopadhyay, S. & Cahay, M. Introduction to Spintronics (CRC Press, 2008).

    Book  Google Scholar 

  4. Schmidt, G. et al. Phys. Rev. B 62, R4790 (2000).

    Article  CAS  Google Scholar 

  5. Awaschalom, D. D. & Samarth, N. Physics 2, 50 (2009).

    Article  Google Scholar 

  6. Eto, M. et al. J. Phys. Soc. Jpn 74, 1934–1937 (2005).

    Article  CAS  Google Scholar 

  7. Nadj-Perge, S. et al. Nature 468, 1084–1087 (2010).

    Article  CAS  Google Scholar 

  8. Kanai, Y. et al. Nature Nanotech. 6, 511–516 (2011).

    Article  CAS  Google Scholar 

  9. Chuang, P. et al. Nature Nanotech. 10, 35–39 (2015).

    Article  CAS  Google Scholar 

  10. van Wees, B. J. et al. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  CAS  Google Scholar 

  11. Wharam, D. A. et al. J. Phys. C 21, L209–L214 (1988).

    Article  Google Scholar 

  12. Debray, P. et al. Nature Nanotech. 4, 759–764 (2009).

    Article  CAS  Google Scholar 

  13. The International Roadmap for Semiconductors; http://www.itrs.net

  14. Koester, S. J. et al. J. Vac. Sci. Technol. B 11, 2528–2532 (1993).

    Article  CAS  Google Scholar 

  15. Al-Taie, H. et al. Appl. Phys. Lett. 102, 243102 (2013).

    Article  Google Scholar 

  16. Hornibrook, J. M. et al. Preprint at http://arXiv.org/abs/1409.2202v1 (2014).

  17. Smith, L. W. et al. Phys. Rev. B 102, 045426 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Cahay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahay, M. Closer to an all-electric device. Nature Nanotech 10, 21–22 (2015). https://doi.org/10.1038/nnano.2014.305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing