Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanofluidic transport governed by the liquid/vapour interface

Abstract

Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Fabrication of osmosis membranes with nanoscale vapour traps.
Figure 2: Verification of membrane integrity.
Figure 3: Demonstration of vapour-phase transport.
Figure 4: Scaling behaviour of measured water flux.
Figure 5: Regime of interface-governed transport and estimated condensation coefficients.

References

  1. Vlassiouk, I., Kozel, T. & Siwy, Z. Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 131, 8211–8220 (2009).

    CAS  Article  Google Scholar 

  2. Fan, R. et al. DNA translocation in inorganic nanotubes. Nano Lett. 5, 1633–1637 (2005).

    CAS  Article  Google Scholar 

  3. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    CAS  Article  Google Scholar 

  4. Brogioli, D. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett. 103, 058501 (2009).

    Article  Google Scholar 

  5. Han, J. & Craighead, H. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    CAS  Article  Google Scholar 

  6. Zeng, Y. & Harrison, D. Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal. Chem. 79, 2289–2295 (2007).

    CAS  Article  Google Scholar 

  7. Kim, S., Ko, S., Kang, K. & Han, J. Direct seawater desalination by ion concentration polarization. Nature Nanotech. 5, 297–301 (2010).

    CAS  Article  Google Scholar 

  8. Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005).

    CAS  Article  Google Scholar 

  9. Vlassiouk, I. & Siwy, Z. Nanofluidic diode. Nano Lett. 7, 552–556 (2007).

    CAS  Article  Google Scholar 

  10. Wang, Y., Stevens, A. & Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    CAS  Article  Google Scholar 

  11. Holt, J. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Article  Google Scholar 

  12. Tas, N., Mela, P., Kramer, T., Berenschot, J. & van den Berg, A. Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett. 3, 1537–1540 (2003).

    CAS  Article  Google Scholar 

  13. Duan, C., Karnik, R., Lu, M. & Majumdar, A. Evaporation-induced cavitation in nanofluidic channels. Proc. Natl Acad. Sci. USA 109, 3688–3693 (2012).

    CAS  Article  Google Scholar 

  14. Lawson, K. & Lloyd, D. Membrane distillation. J. Membr. Sci. 124, 1–25 (1997).

    CAS  Article  Google Scholar 

  15. Lee, J. & Karnik, R. Desalination of water by vapor-phase transport through hydrophobic nanopores. J. Appl. Phys. 108, 044315 (2010).

    Article  Google Scholar 

  16. Cailliez, F., Stirnemann, G., Boutin, A., Demachy, I. & Fuchs, A. Does water condense in hydrophobic cavities? A molecular simulation study of hydration in heterogeneous nanopores. J. Phys. Chem. C 112, 10435–10445 (2008).

    CAS  Article  Google Scholar 

  17. James, M. et al. Nanoscale condensation of water on self-assembled monolayers. Soft Matter 7, 5309–5318 (2011).

    CAS  Article  Google Scholar 

  18. Tyrrell, J. & Attard, P. Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87, 176104 (2001).

    CAS  Article  Google Scholar 

  19. Qu, X. & Davis, E. Droplet evaporation and condensation in the near-continuum regime. J. Aerosol Sci. 32, 861–875 (2001).

    CAS  Article  Google Scholar 

  20. Xiao, Z. et al. Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes. Nano Lett. 2, 1293–1297 (2002).

    CAS  Article  Google Scholar 

  21. Yanagishita, T., Nishio, K. & Masuda, H. Fabrication of metal nanohole arrays with high aspect ratios using two-step replication of anodic porous alumina. Adv. Mater. 17, 2241–2243 (2005).

    CAS  Article  Google Scholar 

  22. Cath, T., Childress, A. & Elimelech, M. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006).

    CAS  Article  Google Scholar 

  23. Gryta, M. Osmotic MD and other membrane distillation variants. J. Membr. Sci. 246, 145–156 (2005).

    CAS  Article  Google Scholar 

  24. Yan, R., Liang, W., Fan, R. & Yang, P. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 9, 3820–3825 (2009).

    CAS  Article  Google Scholar 

  25. Eames, I., Marr, N. & Sabir, H. The evaporation coefficient of water: a review. Int. J. Heat Mass Trans. 40, 2963–2973 (1997).

    CAS  Article  Google Scholar 

  26. Clausing, P. Flow of highly rarefied gases through tubes of arbitrary length. J. Vac. Sci. Technol. 8, 636–646 (1971).

    Article  Google Scholar 

  27. Cunningham, R. E. & Williams, R. J. J. Diffusion in Gases and Porous Media (Plenum, 1980).

    Book  Google Scholar 

  28. Chapman, S., Cowling, T. G. & Burnett, D. The Mathematical Theory of Non-Uniform Gases; An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases 3rd edn (Cambridge Univ. Press, 1970).

    Google Scholar 

  29. Demarcus, W. & Hopper, E. Knudsen flow through a circular capillary. J. Chem. Phys. 23, 1344 (1955).

    CAS  Article  Google Scholar 

  30. Berman, A. Free molecule transmission probabilities. J. Appl. Phys. 36, 3356 (1965).

    CAS  Article  Google Scholar 

  31. Winkler, P. et al. Mass and thermal accommodation during gas–liquid condensation of water. Phys. Rev. Lett. 93, 075701 (2004).

    Article  Google Scholar 

  32. Marek, R. & Straub, J. Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Trans. 44, 39–53 (2001).

    CAS  Article  Google Scholar 

  33. Delaney, L., Houston, R. & Eagleton, L. The rate of vaporization of water and ice. Chem. Eng. Sci. 19, 105–114 (1964).

    CAS  Article  Google Scholar 

  34. Li, Y. et al. Mass and thermal accommodation coefficients of H2O(g) on liquid water as a function of temperature. J. Phys. Chem. A 105, 10627–10634 (2001).

    CAS  Article  Google Scholar 

  35. Mason, E. A. & Malinauskas, A. P. Gas Transport in Porous Media: The Dusty-Gas Model (Elsevier, 1983).

    Google Scholar 

  36. Jackson, R. Transport in Porous Catalysts (Elsevier Scientific, 1977).

    Google Scholar 

  37. Krishna, R. & Wesselingh, J. Review article number 50 — the Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52, 861–911 (1997).

    CAS  Article  Google Scholar 

  38. Remick, R. & Geankoplis, C. J. Binary diffusion of gases in capillaries in the transition region between Knudsen and molecular diffusion. Ind. Eng. Chem. Fund. 12, 214–220 (1973).

    CAS  Article  Google Scholar 

  39. Remick, R. & Geankoplis, C. J. Ternary diffusion of gases in capillaries in the transition region between Knudsen and molecular diffusion. Chem. Eng. Sci. 29, 1447–1455 (1974).

    CAS  Article  Google Scholar 

  40. Yip, N., Tiraferri, A., Phillip, W., Schiffman, J. & Elimelech, M. High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. 44, 3812–3818 (2010).

    CAS  Article  Google Scholar 

  41. Bonacci, J., Myers, A., Nongbri, G. & Eagleton, L. The evaporation and condensation coefficient of water, ice and carbon tetrachloride. Chem. Eng. Sci. 31, 609–617 (1976).

    CAS  Article  Google Scholar 

  42. Mills, A. & Seban, R. Condensation coefficient of water. Int. J. Heat Mass Trans. 10, 1815–1827 (1967).

    CAS  Article  Google Scholar 

  43. Mozurkewich, M. Aerosol growth and the condensation coefficient for water: a review. Aerosol Sci. Technol. 5, 223–236 (1986).

    CAS  Article  Google Scholar 

  44. Hagen, D. et al. Condensation coefficient measurement for water in the UMR cloud simulation chamber. J. Atmos. Sci. 46, 803–816 (1989).

    Article  Google Scholar 

  45. Maerefat, M., Akamatsu, T. & Fujikawa, S. Non-equilibrium condensation of water and carbontetrachloride vapour in a shock-tube. Exp. Fluids 9, 345–351 (1990).

    CAS  Article  Google Scholar 

  46. Shaw, R. & Lamb, D. Experimental determination of the thermal accommodation and condensation coefficients of water. J. Chem. Phys. 111, 10659–10663 (1999).

    CAS  Article  Google Scholar 

  47. Davidovits, P. et al. Mass accommodation coefficient of water vapor on liquid water. Geophys. Res. Lett. 31, L22111 (2004).

    Article  Google Scholar 

  48. Ishiyama, T., Yano, T. & Fujikawa, S. Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase. Phys. Fluids 16, 4713–4726 (2004).

    CAS  Article  Google Scholar 

  49. Meland, R., Frezzotti, A., Ytrehus, T. & Hafskjold, B. Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Phys. Fluids 16, 223–243 (2004).

    CAS  Article  Google Scholar 

  50. Jungwirth, P. & Tobias, D. Specific ion effects at the air/water interface. Chem. Rev. 106, 1259–1281 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Humplik for assistance with X-ray diffraction analysis, N. Milkovic for environmental SEM, J. S. Jeon for confocal microscopy and F. Rahman for helpful discussions. This work was funded by King Fahd University of Petroleum and Minerals in Dhahran, Saudi Arabia, through the Center for Clean Water and Clean Energy at MIT and KFUPM (project no. R10-CW-09). This work made use of the MRSEC Shared Experimental Facilities supported by the National Science Foundation (NSF, award no. DMR-0819762), the Harvard Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN) that is supported by the NSF (award no. ECS-0335765) and the Institute of Soldier Nanotechnologies at MIT.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and R.K. conceived and designed the experiments. J.L. performed the research. J.L., T.L. and R.K. analysed the data and discussed the results. J.L. and R.K. wrote the manuscript.

Corresponding author

Correspondence to Rohit Karnik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2464 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Laoui, T. & Karnik, R. Nanofluidic transport governed by the liquid/vapour interface. Nature Nanotech 9, 317–323 (2014). https://doi.org/10.1038/nnano.2014.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.28

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research