Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sympathetic cooling of a membrane oscillator in a hybrid mechanical–atomic system

Abstract

Sympathetic cooling with ultracold atoms1 and atomic ions2 enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom3. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane4,5, the mass of which exceeds that of the atomic ensemble by a factor of 1010. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance6,7 and is enhanced by placing the membrane in an optical cavity8. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom–membrane cooperativity9 of our hybrid optomechanical system10,11. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles12,13, in a regime where purely optomechanical techniques cannot reach the ground state8,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Coupling mechanism and schematic of the experiment.
Figure 2: Sympathetic cooling of the membrane.
Figure 3: Resonant turn on of sympathetic cooling.

References

  1. 1

    Myatt, C., Burt, E., Ghrist, R., Cornell, E. & Wieman, C. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Larson, D., Bergquist, J., Bollinger, J., Itano, W. & Wineland, D. Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57, 70–73 (1986).

    CAS  Article  Google Scholar 

  3. 3

    Offenberg, D., Zhang, C., Wellers, C., Roth, B. & Schiller, S. Translational cooling and storage of protonated proteins in an ion trap at subkelvin temperatures. Phys. Rev. A 78, 061401 (2008).

    Article  Google Scholar 

  4. 4

    Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Wilson, D. J., Regal, C. A., Papp, S. B. & Kimble, H. J. Cavity optomechanics with stoichiometric SiN films. Phys. Rev. Lett. 103, 207204 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Hammerer, K. et al. Optical lattices with micromechanical mirrors. Phys. Rev. A 82, 021803 (2010).

    Article  Google Scholar 

  7. 7

    Camerer, S. et al. Realization of an optomechanical interface between ultracold atoms and a membrane. Phys. Rev. Lett. 107, 223001 (2011).

    Article  Google Scholar 

  8. 8

    Vogell, B. et al. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Phys. Rev. A 87, 023816 (2013).

    Article  Google Scholar 

  9. 9

    Bennett, J. S., Madsen, L. S., Baker, M., Rubinsztein-Dunlop, H. & Bowen, W. P. Coherent control and feedback cooling in a remotely-coupled hybrid atom–optomechanical system. New J. Phys. 16, 083036 (2014).

    Article  Google Scholar 

  10. 10

    Hunger, D. et al. Coupling ultracold atoms to mechanical oscillators. C. R. Physique 12, 871 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Treutlein, P., Genes, C., Hammerer, K., Poggio, M. & Rabl, P. in Cavity Optomechanics (eds Aspelmeyer, M., Kippenberg, T. & Marquardt, F.) 327–351 (Springer, 2014).

    Book  Google Scholar 

  12. 12

    Millen, J., Deesuwan, T., Barker, P. & Anders, J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotech. 9, 425–429 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. Preprint at http://arXiv.org/abs/1303.0733 (2013).

  14. 14

    Aspelmeyer, M., Meystre, P. & Schwab, K. Quantum optomechanics. Phys. Today 65, 29 (July, 2012).

  15. 15

    O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2013).

    Article  Google Scholar 

  19. 19

    Wang, Y-J. et al. Magnetic resonance in an atomic vapor excited by a mechanical resonator. Phys. Rev. Lett. 97, 227602 (2006).

    Article  Google Scholar 

  20. 20

    Hunger, D. et al. Resonant coupling of a Bose–Einstein condensate to a micromechanical oscillator. Phys. Rev. Lett. 104, 143002 (2010).

    Article  Google Scholar 

  21. 21

    Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nature Phys. 7, 879–883 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Yeo, I. et al. Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nature Nanotech. 9, 106–110 (2013).

    Article  Google Scholar 

  25. 25

    Pirkkalainen, J. M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Weidemüller, M. & Zimmermann, C. (eds) Cold Atoms and Molecules (Wiley, 2009).

    Google Scholar 

  27. 27

    Genes, C., Ritsch, H., Drewsen, M. & Dantan, A. Atom–membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys. Rev. A 84, 051801 (2011).

    Article  Google Scholar 

  28. 28

    Hammerer, K., Aspelmeyer, M., Polzik, E. & Zoller, P. Establishing Einstein–Poldosky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Carmele, A., Vogell, B., Stannigel, K. & Zoller, P. Opto-nanomechanics strongly coupled to a Rydberg superatom: coherent versus incoherent dynamics. New J. Phys. 16, 063042 (2014).

    Article  Google Scholar 

  30. 30

    Willitsch, S. Coulomb-crystallised molecular ions in traps: methods, applications, prospects. Int. Rev. Phys. Chem. 31, 175–199 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Bariani, F., Singh, S., Buchmann, L. F., Vengalattore, M. & Meystre, P. Hybrid optomechanical cooling by atomic λ systems. Phys. Rev. A 90, 033838 (2014).

    Article  Google Scholar 

  32. 32

    Polzik, E. S. & Hammerer, K. Trajectories without quantum uncertainties. Preprint at http://arXiv.org/abs/1405.3067 (2014).

Download references

Acknowledgements

The authors thank B. Vogell, K. Hammerer and P. Zoller for discussions and A. Nunnenkamp and C. Bruder for careful reading and commenting on the manuscript. This work was supported by the Swiss National Science Foundation through NCCR Quantum Science and Technology and by the European Union through the project SIQS. M.T.R. acknowledges support from a Marie Curie IIF fellowship.

Author information

Affiliations

Authors

Contributions

P.T. conceived and supervised the study. A.J., M.K., A.F., T.K. and M.T.R. built the experimental set-up. A.J., A.F. and T.K. performed the experiments and analysed the data, with frequent discussions with P.T. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Philipp Treutlein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jöckel, A., Faber, A., Kampschulte, T. et al. Sympathetic cooling of a membrane oscillator in a hybrid mechanical–atomic system. Nature Nanotech 10, 55–59 (2015). https://doi.org/10.1038/nnano.2014.278

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research