Storing quantum information for 30 seconds in a nanoelectronic device

Abstract

The spin of an electron or a nucleus in a semiconductor1 naturally implements the unit of quantum information—the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices2. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms3, or charge and spin fluctuations arising from defects in oxides and interfaces4. For materials such as silicon, enrichment of the spin-zero 28Si isotope drastically reduces spin-bath decoherence5. Experiments on bulk spin ensembles in 28Si crystals have indeed demonstrated extraordinary coherence times6,7,8. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here, we present the coherent operation of individual 31P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered 28Si substrate. The 31P nuclear spin sets the new benchmark coherence time (>30 s with Carr–Purcell–Meiboom–Gill (CPMG) sequence) of any single qubit in the solid state and reaches >99.99% control fidelity. The electron spin CPMG coherence time exceeds 0.5 s, and detailed noise spectroscopy9 indicates that—contrary to widespread belief—it is not limited by the proximity to an interface. Instead, decoherence is probably dominated by thermal and magnetic noise external to the device, and is thus amenable to further improvement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Device structure and the energy states of the electron and nuclear spin qubits.
Figure 2: Electron spin qubit.
Figure 3: Nuclear spin qubit.
Figure 4: Noise spectroscopy of the electron spin qubit.

References

  1. 1

    Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Yao, W., Liu, R-B. & Sham, L. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  Google Scholar 

  4. 4

    De Sousa, R. Dangling-bond spin relaxation and magnetic 1/f noise from the amorphous-semiconductor/oxide interface: theory. Phys. Rev. B 76, 245306 (2007).

    Article  Google Scholar 

  5. 5

    Witzel, W. M., Carroll, M. S., Morello, A., Cywinski, L. & Das Sarma, S. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 105, 187602 (2010).

    Article  Google Scholar 

  6. 6

    Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si ‘semiconductor vacuum’. Science 336, 1280–1283 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Alvarez, G. A. & Suter, D. Measuring the spectrum of colored noise by dynamical decoupling. Phys. Rev. Lett. 107, 230501 (2011).

    Article  Google Scholar 

  10. 10

    Schenkel, T. et al. Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon. Appl. Phys. Lett. 88, 112101 (2006).

    Article  Google Scholar 

  11. 11

    Paik, S-Y., Lee, S-Y., Baker, W., McCamey, D. & Boehme, C. t1 and t2 spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects. Phys. Rev. B 81, 075214 (2010).

    Article  Google Scholar 

  12. 12

    Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nature Nanotech. 8, 561–564 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Laird, E. A., Pei, F. & Kouwenhoven, L. A valley-spin qubit in a carbon nanotube. Nature Nanotech. 8, 565–568 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Mohiyaddin, F. A. et al. Noninvasive spatial metrology of single-atom devices. Nano Lett. 13, 1903–1909 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Rahman, R., Park, S. H., Boykin, T. B., Klimeck, G., Rogge, S. & Hollenberg, L. C. L. Gate-induced g-factor control and dimensional transition for donors in multivalley semiconductors. Phys. Rev. B 80, 155301 (2009).

    Article  Google Scholar 

  16. 16

    Greenland, P. et al. Coherent control of Rydberg states in silicon. Nature 465, 1057–1061 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Dehollain, J. P., Pla, J. J., Siew, E., Tan, K. Y., Dzurak, A. S. & Morello, A. Nanoscale broadband transmission lines for spin qubit control. Nanotechnology 24, 015202 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Jamieson, D. N. et al. Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl. Phys. Lett. 86, 202101 (2005).

    Article  Google Scholar 

  20. 20

    Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Morton, J. J. L et al. Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance. Phys. Rev. A 71, 012332 (2005).

    Article  Google Scholar 

  25. 25

    Cywinski, L., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  26. 26

    Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Phys. 7, 565–570 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Kalra, R., Laucht, A., Hill, C. D. & Morello, A. Robust two-qubit gates for donors in silicon controlled by hyperfine interactions. Phys. Rev. X 4, 021044 (2014).

    Google Scholar 

  30. 30

    Hu, X., Liu, Y-X. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M.J. Biercuk for discussions. This research was funded by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project no. CE11E0001027) and the US Army Research Office (W911NF-13-1-0024). The authors acknowledge support from the Australian National Fabrication Facility and from the laboratory of Robert Elliman at the Australian National University for ion implantation facilities. The work at Keio has been supported in part by FIRST, the Core-to-Core Program by JSPS and the Grant-in-Aid for Scientific Research and Project for Developing Innovation Systems by MEXT.

Author information

Affiliations

Authors

Contributions

J.T.M., J.P.D., A.S.D. and A.M. designed the experiments. J.T.M., J.P.D. and A.L. performed the measurements and analysed the results with A.M.'s supervision. D.N.J. and J.C.M. designed the P implantation experiments. F.E.H. fabricated the device with A.S.D.'s supervision and R.K.'s assistance. T.S. and K.M.I. prepared and supplied the 28Si epilayer wafer. J.T.M., J.P.D and A.M. wrote the manuscript, with input from all co-authors.

Corresponding authors

Correspondence to Juha T. Muhonen or Andrea Morello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1066 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhonen, J., Dehollain, J., Laucht, A. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotech 9, 986–991 (2014). https://doi.org/10.1038/nnano.2014.211

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research